Metric CAMROL® Bearings A Regal Brand # CAMROL® – the original Cam Follower Bearing, invented by McGill over 70 years ago. CAMROL is the trademark for the line of roller bearing cam followers manufactured by McGill and designed for use as cam followers and track rollers. The CAMROL Cam Follower Bearing was originally invented by McGill over 60 years ago. Since then, McGill has maintained its leading position through the continuous development of new features and improvements to the line. McGill has worked closely with its customers to serve global needs of industry with a complete series of Metric Cam Followers. The McGill standard Metric CAMROL is manufactured to ISO standards and Asian designs. The metric stud type MCF and cam yoke roller MCYR share all the same high-quality features as other CAMROL Bearings. Each Cam Follower is supplied with two nuts and appropriate metric threads; the second nut is intended to serve as a locknut. All designs use the patented LUBRI-DISC® Seals that provide positive protection against contamination and loss of lubricant. LUBRI-DISC Seals reduce internal bearing friction – bearings wear less and last longer. | Contents | Page | |--|------| | Engineering Data | 2 | | MCF Series - Needle Rollers/Stud Type | 8 | | MCYR Series - Needle Rollers/Yoke Type | 10 | | MCFD Series - Cylindrical Rollers/Stud Type | 12 | | MCYRD Series - Cylindrical Rollers/Yoke Type | 13 | | Eccentric Collar CAMROL Bearings | 14 | | nterchangeability Charts | 15 | ## METRIC CAMROL Bearings McGill offers METRIC CAMROL Bearings in metric dimensions equivalent to the ISO standard series. Both European and Asian versions are available. Stud Type Yoke Type McGill METRIC CAMROL Bearings are available in stud or yoke type versions. Specifying the yoke type or stud type bearing will depend on the preference for either a straddle (yoke) mounting or a cantilever (overhung) mounting. #### **Standard Features:** - Outer rings with a large radial cross section to withstand bending stresses that result from heavy rolling or shock loads. - Black oxide finish on all exposed surfaces helps prevent corrosion. - All bearings are available with a cylindrical outside diameter or the standard 500mm crown radius. - Integral studs on MCF, MCFR and MCFD cam followers are designed for cantilever mounting. Extended end of the inner stud has metric threads. The screw-driver slot (or optional broach slot) on the flange is used to hold the stud stationary while tightening the nuts during mounting. - Metric stud type cam followers include two metric nuts and a lubrication fitting. The second nut serves as a locknut. (See page 2.) McGill METRIC CAMROL Bearings are available with three types of internal construction: full complement needle rollers, retainer type needle rollers or cylindrical rollers. ## **Load Ratings** The basic load rating or basic dynamic rating, as defined by ABMA and ISO, is that calculated, constant radial load which 90% of a group of apparently identical bearings with stationary outer ring can theoretically endure for a rating life of 1,000,000 revolutions (33 1/3 rpm for 500 hours). The basic load rating is a reference value only, the base value of 1,000,000 revolutions chosen for ease of calculation. The dimensional tables list the Basic Dynamic (C) and Basic Static (Co) Load Ratings as calculated by the ISO and ABMA standards. Also listed are the dynamic and static ratings for the CAMROL Bearings operating as track rollers. These dynamic and static ratings are less than those calculated by the basic load rating formulas (C and Co) and account for the additional bending stresses present because the outer ring is unsupported. The load applied on the bearing while it is operating dynamically should not exceed 50% of the dynamic rating as a track roller. #### Bearing Life Statistical L_{10} bearing fatigue life can be calculated according to the following formula: $$L_{10}$$ life in hours = $\frac{16666}{N} \times \left(\frac{BDR}{P}\right)^{10/3}$ Where: BDR = Basic Dynamic Rating (Newtons) P = Radial Load (Newtons) N = Speed(RPM) = Fatigue Life (Hours) To determine the basic dynamic rating required for a given application, use the following formula: BDR = $$.054 \times P \times (L_{10} \times N)^{.3}$$ #### Mounting The following should be considered in mounting CAMROL Bearings: - The housing that supports the cam follower stud (or the shaft on which the cam yoke roller is mounted) should be of sufficient strength to resist excessive deformation under the expected applied load. - The face of the housing should be flat and square with the housing bore, and must have a diameter of at least that listed in the dimensional tables for proper support of the bearing endplate. - In order to obtain the best support for the CAMROL Bearing, the chamfer on the housing bore should not exceed 0.5 mm x 45o. - When mounting stud type CAMROL Bearings in a machine member, the radial lubrication hole (it is in line with the McGill name) should be located in the unloaded portion of the raceway. - Any pressure required for installation should be applied against the solid center portion of the flanged inner stud (not on the flange perimeter), and the cam follower should be drawn up tightly by the nut so the bearing endplate is securely backed up. - Precaution should be taken to avoid excessive torque when tightening the clamping nut; otherwise undue stress may be set up in the stud. - The clamping nut should not be tightened beyond the maximum clamping torque listed in the dimensional table. - Yoke type CAMROL Bearings should be mounted with the lubrication hole in the unloaded portion of the raceway and according to the recommended shaft dimensions listed in the tabular data. - When a tight fit of the bearing on a shaft is desired, an ISO j6 shaft tolerance should be employed. For heavily loaded applications, the bearing should be clamped endwise and mounted on a high strength shaft with an ISO j6 tolerance. - If the bearing cannot be clamped endwise, it is essential to have a close axial fit in the yoke in which the bearing is mounted to prevent axial displacement of the endplates under load. #### Lubrication All McGill CAMROL Bearings are supplied prelubricated with a high grade lithium base grease having an operating temperature range of -29°C to +120°C (-20°F to +248°F) and frequent relubrication is suggested for continuous rotating applications. #### **Provision for Relubrication - Stud Type** Stud type CAMROL Bearings have provision for relubrication either through the end of the inner stud or through a cross drilled hole in the stud shank. Sizes up through 19mm OD do not have an axial hole from the threaded end, and no cross drill hole is present in the stud shank on sizes through 26mm OD. The counterbored ends of the axial holes are designed to accept a press-fitted type metric lubrication fitting. Closing plugs are supplied so that the unused axial hole or holes can be sealed. If the cross-drilled hole is not used for relubrication, it should be covered by the housing; therefore, no plug is supplied for this hole. #### **Provision for Relubrication - Yoke Type** Yoke type CAMROL Bearings have a lubrication hole in the inner ring bore so relubrication can be accomplished through a cross-drilled hole in the supporting shaft if desired. ## Track Design Since cam followers or cam yoke rollers are merely one component of a two-piece bearing construction, along with the track or cam on which it operates, proper selection of the track or cam material must be considered. This selection has a direct effect upon ultimate life and performance of the cam roll application. Where bearings are used as support or guide rollers, it is often difficult to obtain high hardness and tensile strength values for the machine members against which the bearings operate. In the interest of economy, relatively soft structural materials can be applied in most applications where dimensional accuracy is not extremely critical. The work hardening of ferrous, low carbon track materials, accompanied by relatively small amounts of wear-in of the bearing into the track surface, generally results in satisfactory bearing performance. In the application of cam follower or cam yoke roller bearings (lift truck mast rollers, for instance), it is common to employ formed structural steel sections as bearing track support members, and the wearing-in and work hardening of the track surface generally results in a satisfactory bearing application, providing loads are not excessive. #### Cam Design Cam applications are similar in many respects to track or support roller applications, except that bearing speeds are higher due to the multiplication of cam revolutions per minute by the ratio of the cam OD to the cam follower OD. Because of these higher speeds, oil lubrication is preferred, but where such lubrication methods are not possible, grease should be replaced frequently. In the application of box or drum cams, it is possible to obtain differential rotation of the cam follower outer race as well as associated load reversals. This may result in excessive wear of cams or cam followers unless proper cam hardness and materials are employed, as well as ample lubrication. In box cams of this nature, the cam rise and cam fall should be watched closely, since the load reversal encountered can cause shock loads in excess of the capacity of the stud or bearing. The same precaution applies to ordinary circular cams. Instantaneous loads due to rapid cam rise should be carefully calculated and kept below the ultimate strength of the follower and the stud. In ordinary cam design it is possible to employ the most efficient materials for best resistance to fatigue and brinelling, and attainment of high track surface hardnesses associated with good wear resistance is quite feasible. The same general precautions concerning tensile
strength, as listed under track design above, should be followed for cam design; applications involving high marginal bearing or cam loading should be referred to the McGill Engineering Department. ## **Track Capacity** Track capacity of all cam follower and cam yoke roller bearings is the load which a steel track of a given tensile strength will withstand continuously without deformation or brinelling. Table II lists track capacities for steel tracks for the standard crowned roller outside diameter versions. For the straight cylindrical roller outside diameter versions ("-X" suffix), multiply by 1.25 to obtain the track capacity ratings. To obtain track capacities for track hardnesses other than Rockwell "C" scale 40 (tensile strength 1242 MPa), multiply track capacity by track capacity factor listed in Table I. Regardless of track capacity, dynamic load should not exceed 50% of basic dynamic rating as a track roller and static load should not exceed maximum static rating as a track roller. Table I - Track Tensile Strength | Мра | Track Hardness
Rockwell "C" | Track Capacity
Factor | | | |------|--------------------------------|--------------------------|--|--| | 828 | 26 | 0.445 | | | | 966 | 32 | 0.667 | | | | 1104 | 36 | 0.792 | | | | 1242 | 40 | 1.000 | | | | 1380 | 44 | 1.237 | | | | 1518 | 47 | 1.495 | | | | 1656 | 50 | 1.775 | | | | 1794 | 53 | 2.090 | | | | 1932 | 56 | 2.420 | | | | 2070 | 58 | 2.780 | | | Table II - Track Capacities | Basic Bearing
Number | Track Capacity
Newtons | Basic Bearing
Number | Track Capacity
Newtons | |-------------------------|---------------------------|-------------------------|---------------------------| | MCFR-13 | 1910 | MCFR-52 | 19200 | | MCFR-16 | 2940 | MCYRR-25 | 19200 | | MCYRR-5 | 2940 | MCFD-52 | 19200 | | MCFR-19 | 3490 | MCYRD-25 | 19200 | | MCYRR-6 | 3490 | MCFR-62 | 28400 | | MCFR-22 | 4270 | MCYRR-30 | 27400 | | MCYRR-8 | 5500 | MCFD-62 | 28400 | | MCFR-26 | 5050 | MCYRD-30 | 27400 | | MCFR-30 | 6350 | MCFR-72 | 31800 | | MCYRR-10 | 6350 | MCYRR-35 | 30500 | | MCFR-32 | 6780 | MCFD-72 | 31800 | | MCYRR-12 | 6780 | MCYRD-35 | 30500 | | MCFR-35 | 9840 | MCFR-80 | 43800 | | MCYRR-15 | 9840 | MCYRR-40 | 36700 | | MCDF-35 | 9840 | MCFD-80 | 43800 | | MCYRD-15 | 9840 | MCYRD-40 | 36700 | | MCFR-40 | 12000 | MCFR-85 | 46400 | | MCYRR-17 | 12000 | MCYRR-45 | 39000 | | MCFD-40 | 12000 | MCYRD-45 | 39000 | | MCYRD-17 | 12000 | MCFR-90 | 49500 | | MCFR-47 | 17400 | MCYRR-50 | 41300 | | MCYRR-20 | 17400 | MCFD-90 | 49200 | | MCFD-47 | 17400 | MCYRD-50 | 41300 | | MCYRD-20 | 17400 | | | ## **CAMROL Bearing Application Engineering** Track or load support rollers to provide anti-friction linear motion. External cam applications — precise, anti-friction translation of motion. Track guide rollers — to insure free and accurate lateral location during linear motion. Internal cam applications. From an application standpoint, cam follower and cam yoke roller-type bearings may be mounted interchangeably. The selection depends upon the mounting preference: - Straddle or yoke mounting requires the use of a cam yoke roller bearing - Cantilever or overhung mounting requires use of the stud mounted cam follower In general, heavier loads can be supported by the cam yoke roller bearing where the voke mounting arrangement is possible — since the problem of stud deflection is eliminated, and the ultimate shear strength of the pin on which the cam yoke bearing is mounted becomes the governing factor from a load-carrying standpoint. In most cases, the cam follower construction is preferred because of its simpler mounting: the user needs only to drill and ream a suitable mounting hole in the support housing. Both cam followers and cam yoke rollers offer a low-cost, readily available, easily mounted bearing for follower arms, guide rollers, table support bearings and many other applications — involving either linear movement or the translation of rotary motion to axial motion. Due to the accuracy of manufacture, bearings can easily be mounted in multiples, providing hole locations are maintained for table support rollers with resultant adequate load sharing properties. Where greater accuracy is required, it is possible to select catalog bearings to closer control limits; and where accuracy of mounting is needed, it is possible to mount the cam follower stud in an auxiliary eccentric collar, which in turn is mounted in the support member. With this modification, the ultimate in accurate load sharing capabilities is gained in multiple bearing arrangements. ## Yoke Mounting In the application of cam yoke roller bearings, several mounting arrangements are possible, and three of these are shown above for MCYR bearings. These mountings are straight-forward and show the bearings clamped endwise in each case. It is possible to apply bearings of this type without resorting to endwise clamping; however endwise clearance over the endplate should be controlled closely to avoid disassembly of the bearing. ## Hex Hole CAMROL Bearings Metric stud type CAMROL Bearings are available with a hexagonal hole in the face of the stud in place of the screwdriver slot. This feature is advantageous for mounting bearings in blind holes or with self-locking nuts requiring greater-than-average thread torque. In this modification, relubrication through the flange end of the stud is not possible. #### **Hexagonal Wrench Sizes** | Basic Bearing
Number | Hex Wrench
Size, mm | Basic Bearing
Number | Hex Wrench
Size, mm | | | |-------------------------|------------------------|-------------------------|------------------------|--|--| | 13 | 3 | 47 | 10 | | | | 16 | 4 | 47A | 10 | | | | 19 | 4 | 52 | 10 | | | | 22 | 4 | 52A | 10 | | | | 22A | 5 | 62 | 14 | | | | 26 | 4 | 62A | 14 | | | | 26A | 5 | 72 | 14 | | | | 30 | 30 6 72A | | 14 | | | | 32 | 32 6 | | 14 | | | | 35 | 8 | 85 | 14 | | | | 40 | 8 | 90 | 14 | | | | 40A | 8 | | | | | ## **Eccentric Collar CAMROL Bearings** The eccentric collar feature provides an easy means of radial adjustment for precise positioning of cam followers, track, guide and support rollers. In-line combinations of eccentric collar CAMROL Bearings can be perfectly aligned without the need for extremely close tolerances of mounting holes and members. Problems involving control of clearances, preloading and compensation for wear can be avoided or solved by the easy adjustment of new bearings. In most applications, a lock nut is sufficient to hold the bearing at the desired position. In applications where a more positive means of holding a given position is required, this can be accomplished by drilling and doweling through the housing into the bushing and the stud. ## Coding for Metric CAMROL Bearings #### **Stud Type** | Series | Construction Features | | | | | |------------------|-------------------------------------|--|--|--|--| | MCF | Full complement of needle rollers | | | | | | MCFE | With eccentric collar | | | | | | MCF-X | With cylindrical outside diameter | | | | | | MCF-B, MCF-BX | With hexagonal hole | | | | | | MCF-S, MCF-SBX | With seals | | | | | | MCFR | Caged needle rollers | | | | | | MCFRE | With eccentric collar | | | | | | MCFR-X | With cylindrical outside diameter | | | | | | MCFR-B, MCFR-BX | With hexagonal hole | | | | | | MCFR-S, MCFR-SBX | With seals | | | | | | MCFD | Full complement cylindrical rollers | | | | | | MCFDE | With eccentric collar | | | | | | MCFD-X | With cylindrical outside diameter | | | | | #### Yoke Type | Series | Construction Features | | | | |----------|-------------------------------------|--|--|--| | MCYR | Full complement of needle rollers | | | | | MCYR-S | With seals | | | | | MCYR-X | With cylindrical outside diameter | | | | | MCYR-SX | With cylindrical outside diameter | | | | | MCYRR | Caged needlie rollers | | | | | MCYRR-S | With seals | | | | | MCYRR-SX | With cylindrical outside diameter | | | | | MCYRD | Full complement cylindrical rollers | | | | | MCYRD-X | With cylindrical outside diameter | | | | ## **MCF SERIES** #### **STUD TYPE** **Series MCF** — Unsealed, full complement **Series MCF-S** — Sealed, full complement **Series MCFR** — Unsealed, cage type **Series MCFR-S** — Sealed, cage type **MCF** | UNSEALED
BRG. | SEALED
BRG. | ROLLER
DIA.
RD | ROLLER
WIDTH
W | STUD DIA.
SD
NOM. | STUD
L'GTH.
SL | OVERALL
LENGTH | ENDPLATE
EXTENSION
E | THREAD | THREAD
LENGTH | OIL I | HOLE | |---------------------|-------------------------|----------------------|----------------------|-------------------------|----------------------|-------------------|----------------------------|----------|------------------|--------------|--------------| | NO.
(1) | NO.
(1) | NOM.
(2) | +0.00
-0.12 | (3) | NOM. | иот. | ทดั้พ. | | TL
NOM. | (HC)
NOM. | (HD)
NOM. | | | | mm m | m | | MCFR-13 | MCFR-13-S | 13 | 9 | 5 | 13 | 23 | 0.6 | M5x0.8 | 7.5 | - | - | | MCFR-16
MCF-16 | MCFR-16-S
MCF-16-S | 16 | 11 | 6 | 16 | 28 | 0.6 | M6x1 | 9 | - | - | | MCFR-19
MCF-19 | MCFR-19-S
MCF-19-S | 19 | 11 | 8 | 20 | 32 | 0.6 | M8x1.25 | 11 | - | - | | MCFR-22
MCF-22 | MCFR-22-S
MCF-22-S | 22 | 12 | 10 | 23 | 36 | 0.6 | M10x1 | 12 | - | - | | MCFR-22A
MCF-22A | MCFR-22A-S
MCF-22A-S | 22 | 12 | 10 | 23 | 36 | 0.6 | M10x1.25 | 13 | - | - | | MCFR-26
MCF-26 | MCFR-26-S
MCF-26-S | 26 | 12 | 10 | 23 | 36 | 0.6 | M10x1 | 12 | - | - | | MCFR-26A
MCF-26A | MCFR-26A-S
MCF-26A-S | 26 | 12 | 10 | 23 | 36 | 0.6 | M10x1.25 | 13 | - | - | | MCFR-30
MCF-30 | MCFR-30-S
MCF-30-S | 30 | 14 | 12 | 25 | 40 | 0.6 | M12x1.5 | 14 | 6 | 3 | | MCFR-32
MCF-32 | MCFR-32-S
MCF-32-S | 32 | 14 | 12 | 25 | 40 | 0.6 | M12x1.5 | 14 | 6 | 3 | | MCFR-35
MCF-35 | MCFR-35-S
MCF-35-S | 35 | 18 | 16 | 32.5 | 52 | 0.8 | M16x1.5 | 18 | 8 | 3 | | MCFR-40
MCF-40 | MCFR-40-S
MCF-40-S | 40 | 20 | 18 | 36.5 | 58 | 0.8 | M18x1.5 | 19 | 8 | 3 | | MCFR-40A
MCF-40A |
MCFR-40A-S
MCF-40A-S | 40 | 20 | 18 | 36.5 | 58 | 0.8 | M18x1.5 | 20 | 10 | 3 | | MCFR-47
MCF-47 | MCFR-47-S
MCF-47-S | 47 | 24 | 20 | 40.5 | 66 | 0.8 | M20x1.5 | 21 | 9 | 4 | | MCFR-47A
MCF-47A | MCFR-47A-S
MCF-47A-S | 47 | 24 | 20 | 40.5 | 66 | 0.8 | M20x1.5 | 22 | 12 | 4 | | MCFR-52
MCF-52 | MCFR-52-S
MCF-52-S | 52 | 24 | 20 | 40.5 | 66 | 0.8 | M20x1.5 | 21 | 9 | 4 | | MCFR-52A
MCF-52A | MCFR-52A-S
MCF-52A-S | 52 | 24 | 20 | 40.5 | 66 | 0.8 | M20x1.5 | 22 | 12 | 4 | | MCFR-62
MCF-62 | MCFR-62-S
MCF-62-S | 62 | 29 | 24 | 49.5 | 80 | 0.8 | M24x1.5 | 25 | 11 | 4 | | MCFR-62A
MCF-62A | MCFR-62A-S
MCF-62A-S | 62 | 29 | 24 | 49.5 | 80 | 0.8 | M24x1.5 | 25 | 12 | 4 | | MCFR-72
MCF-72 | MCFR-72-S
MCF-72-S | 72 | 29 | 24 | 49.5 | 80 | 0.8 | M24x1.5 | 25 | 11 | 4 | | MCFR-72A
MCF-72A | MCFR-72A-S
MCF-72A-S | 72 | 29 | 24 | 49.5 | 80 | 0.8 | M24x1.5 | 25 | 12 | 4 | | MCFR-80
MCF-80 | MCFR-80-S
MCF-80-S | 80 | 35 | 30 | 63 | 100 | 1 | M30x1.5 | 32 | 15 | 4 | | MCFR-85
MCF-85 | MCFR-85-S
MCF-85-S | 85 | 35 | 30 | 63 | 100 | 1 | M30x1.5 | 32 | 15 | 4 | | MCFR-90
MCF-90 | MCFR-90-S
MCF-90-S | 90 | 35 | 30 | 63 | 100 | 1 | M30x1.5 | 32 | 15 | 4 | Standard bearing has a crowned roller outside diameter. For straight cylindrical outside roller diameter, add suffix "X". Example - MCFR-35-X or MCF-35-SX Tolerance limits for Roller Diameter are shown below. #### Cylindrical Roller Dia. "RD" | RD (I | NOM.) | TOLERANCE | | | | |-------|-------|-----------|--------|--|--| | OVER | INCL. | MAX. | MIN. | | | | mm | mm | mm | mm | | | | 6 | 18 | 0 | -0.008 | | | | 18 | 30 | 0 | -0.009 | | | | 30 | 50 | 0 | -0.011 | | | | 50 | 80 | 0 | -0.013 | | | | 80 | 120 | 0 | -0.015 | | | #### Crowned Roller Dia. "RD" | RD (N | NOM.) | TOLERANCE | | | | |-------|-------|-----------|--------|--|--| | OVER | INCL. | MAX. | MIN. | | | | mm | mm | mm | mm | | | | 6 | 120 | 0 | -0.050 | | | ## **MCF SERIES** MCFR-S | UNSEALED
BRG. | SEALED
BRG. | REAMED
HOLE
D | CORNER
RADIUS | CLAMPING
DIA. | CLAMPING
TORQUE
MAX | LIMITING
(7 | | HOUSING
BORE DIA. | | ISO/ABMA
LOAD RA
NEWT | TINGS | TRACK ROLLER
LOAD RATINGS
NEWTONS | | MASS | |---------------------|-------------------------|---------------------|------------------|------------------|---------------------------|----------------|----------------|----------------------|--------|-----------------------------|------------------|---|-----------------|----------------| | NO.
(1) | NO.
(1) | NOM. | R | MIN. | (4) | GREASE | OIL | m | m | DYNAMIC | STATIC | DYNAMIC | STATIC | | | | | mm | mm | mm | Nm | rpm | rpm | MIN. | MAX. | | | (6) | (5) | kg. | | MCFR-13 | MCFR-13-S | 3.1* | 0.3 | 9 | 2.2 | 20000 | 30000 | 5.000 | 5.012 | 2450 | 2260 | 2060 | 1650 | 0.010 | | MCFR-16
MCF-16 | MCFR-16-S
MCF-16-S | 4* | 0.3 | 11 | 3 | 19500
13000 | 25000
17000 | 6.000 | 6.012 | 4120
6960 | 4120
8340 | 3430
5790 | 2350
2350 | 0.018
0.019 | | MCFR-19
MCF-19 | MCFR-19-S
MCF-19-S | 4* | 0.3 | 13 | 8 | 15500
10500 | 20000
13500 | 8.000 | 8.015 | 4510
8040 | 5000
10490 | 3730
6670 | 4140
5100 | 0.028
0.029 | | MCFR-22
MCF-22 | MCFR-22-S
MCF-22-S | 4 | 0.5 | 15 | 15 | 13500
9000 | 17500
11500 | 10.000 | 10.015 | 6280
9410 | 7260
12360 | 5200
7850 | 6050
10400 | 0.043
0.044 | | MCFR-22A
MCF-22A | MCFR-22A-S
MCF-22A-S | 4 | 0.5 | 15 | 15 | 13500
9000 | 17500
11500 | 10.000 | 10.015 | 6280
9410 | 7260
12360 | 5200
7850 | 6050
10400 | 0.043
0.044 | | MCFR-26
MCF-26 | MCFR-26-S
MCF-26-S | 4 | 0.5 | 15 | 15 | 13500
9000 | 17500
11500 | 10.000 | 10.015 | 6280
9410 | 7260
12360 | 5200
7850 | 6050
10400 | 0.055
0.056 | | MCFR-26A
MCF-26A | MCFR-26A-S
MCF-26A-S | 4 | 0.5 | 15 | 15 | 13500
9000 | 17500
11500 | 10.000 | 10.015 | 6280
9410 | 7260
12360 | 5200
7850 | 6050
10400 | 0.055
0.056 | | MCFR-30
MCF-30 | MCFR-30-S
MCF-30-S | 6 | 1 | 19 | 22 | 9600
6400 | 12500
8300 | 12.000 | 12.018 | 8240
13240 | 9710
18140 | 6860
11080 | 8050
15300 | 0.087
0.089 | | MCFR-32
MCF-32 | MCFR-32-S
MCF-32-S | 6 | 1 | 19 | 22 | 9600
6400 | 12500
8300 | 12.000 | 12.018 | 8240
13240 | 9710
18140 | 6860
11080 | 8050
15300 | 0.096
0.099 | | MCFR-35
MCF-35 | MCFR-35-S
MCF-35-S | 6 | 1 | 24 | 57 | 6300
4200 | 8000
5500 | 16.000 | 16.018 | 13040
20300 | 19030
34130 | 10890
16970 | 15900
28500 | 0.166
0.171 | | MCFR-40
MCF-40 | MCFR-40-S
MCF-40-S | 6 | 1.5 | 27 | 85 | 5000
3300 | 6400
4300 | 18.000 | 18.018 | 15990
23240 | 23730
38540 | 13340
19420 | 19800
32200 | 0.245
0.248 | | MCFR-40A
MCF-40A | MCFR-40A-S
MCF-40A-S | 6 | 1.5 | 27 | 85 | 5000
3300 | 6400
4300 | 18.000 | 18.018 | 15990
23240 | 23730
38540 | 13340
19420 | 19800
32200 | 0.245
0.248 | | MCFR-47
MCF-47 | MCFR-47-S
MCF-47-S | 8 | 1.5 | 30 | 118 | 3900
2600 | 5000
3400 | 20.000 | 20.021 | 21280
30790 | 35700
57670 | 17750
25690 | 29800
46700 | 0.387
0.393 | | MCFR-47A
MCF-47A | MCFR-47A-S
MCF-47A-S | 8 | 1.5 | 30 | 118 | 3900
2600 | 5000
3400 | 20.000 | 20.021 | 21280
30790 | 35700
57670 | 17750
25690 | 29800
46700 | 0.387
0.393 | | MCFR-52
MCF-52 | MCFR-52-S
MCF-52-S | 8 | 1.5 | 30 | 118 | 3900
2600 | 5000
3400 | 20.000 | 20.021 | 21280
30790 | 35700
57670 | 17750
25690 | 29800
46700 | 0.453
0.455 | | MCFR-52A
MCF-52A | MCFR-52A-S
MCF-52A-S | 8 | 1.5 | 30 | 118 | 3900
2600 | 5000
3400 | 20.000 | 20.021 | 21280
30790 | 35700
57670 | 17750
25690 | 29800
46700 | 0.453
0.455 | | MCFR-62
MCF-62 | MCFR-62-S
MCF-62-S | 8 | 1.5 | 38 | 216 | 3100
2100 | 4100
2700 | 24.000 | 24.021 | 31680
46580 | 55700
92630 | 26380
38840 | 46300
65400 | 0.801
0.810 | | MCFR-62A
MCF-62A | MCFR-62A-S
MCF-62A-S | 8 | 1.5 | 38 | 216 | 3100
2100 | 4100
2700 | 24.000 | 24.021 | 31680
46580 | 55700
92680 | 26380
38840 | 46300
65400 | 0.801
0.810 | | MCFR-72
MCF-72 | MCFR-72-S
MCF-72-S | 8 | 2 | 38 | 216 | 3100
2100 | 4100
2700 | 24.000 | 24.021 | 31680
46580 | 55700
92680 | 26380
38840 | 46300
65400 | 1.039
1.048 | | MCFR-72A
MCF-72A | MCFR-72A-S
MCF-72A-S | 8 | 2 | 38 | 216 | 3100
2100 | 4100
2700 | 24.000 | 24.021 | 31680
46580 | 55700
92680 | 26380
38840 | 46300
65400 | 1.039
1.048 | | MCFR-80
MCF-80 | MCFR-80-S
MCF-80-S | 8 | 2 | 51 | 441 | 2200
1500 | 2900
2000 | 30.000 | 30.021 | 56000
76980 | 105030
159850 | 46680
64140 | 87600
102300 | 1.621
1.642 | | MCFR-85
MCF-85 | MCFR-85-S
MCF-85-S | 8 | 2 | 51 | 441 | 2200
1500 | 2900
2000 | 30.000 | 30.021 | 56000
76980 | 105030
159850 | 46680
64140 | 87600
102300 | 1.793
1.814 | | MCFR-90
MCF-90 | MCFR-90-S
MCF-90-S | 8 | 2 | 51 | 441 | 2200
1500 | 2900
2000 | 30.000 | 30.021 | 56000
76980 | 105030
159850 | 46680
64140 | 87600
102300 | 1.981
2.002 | (3) Stud Diameter "SD" per ISO tolerance h7, shown below. #### Stud Dia. "SD" | SD (N | NOM.) | TOLERANCE | | | | |-------|-------|-----------|------------|--|--| | OVER | INCL. | MAX. | MIN.
mm | | | | mm | mm | mm | | | | | 2 | 6 | 0 | -0.012 | | | | 6 | 10 | 0 | -0.015 | | | | 10 | 18 | 0 | -0.018 | | | | 18 | 30 | 0 | -0.021 | | | - (4) Clamping torque is based on dry threads. If threads are lubricated, use half of value shown. - (5) Static load rating is based on stud strength or on internal rolling element load distribution stresses. - (6) Dynamic load should not exceed 50% of Dynamic Rating as a track roller. - (7) Since load, lubrication method, temperature and other factors affect the maximum operating speed, it is impossible to determine precise limiting speed. The listed limiting speeds are based on lightly loaded bearings having adequate lubrication and are listed only as a design guide. More frequent relubrication is required when operating at higher speeds. Actual bearing testing in the specific application should be conducted if the anticipated operating speed approaches the listed limiting speed. - Sizes marked have no lube holes in threaded end of stud. #### **MCYR SERIES** #### **YOKE TYPE** Series MCYR — Unsealed, full complement Series MCYR-S — Sealed, full complement **Series MCYRR** — Unsealed, cage type **Series MCYRR-S** — Sealed, cage type | | SEALED
BEARING
NUMBER
(1) | BEARING DIMENSIONS | | | | | | | | | |--------------------------------------|------------------------------------|--------------------|-------------|------------------------------|----------------------|------|-----------|-----------------------|--|--| | UNSEALED
BEARING
NUMBER
(1) | | _ | E DIA.
B | ROLLER
DIA.
RD
NOM. | ROLLER
WIDTH
W | | DTH
V1 | CORNER
RADIUS
R | | | | | | MAX. | MIN. | (2) | +0.00
-0.12 | MAX. | MIN. | | | | | | | mm | | | MCYRR-5
MCYR-5 | MCYRR-5-S
MCYR-5-S | 5 | 4.992 | 16 | 11 | 12 | 11.82 | 0.3 | | | | MCYRR-6
MCYR-6 | MCYRR-6-S
MCYR-6-S | 6 | 5.992 | 19 | 11 | 12 | 11.82 | 0.3 | | | | MCYRR-8
MCYR-8 | MCYRR-8-S
MCYR-8-S | 8 | 7.992 | 24 | 14 | 15 | 14.82 | 0.5 | | | | MCYRR-10
MCYR-10 | MCYRR-10-S
MCYR-10-S | 10 | 9.992 | 30 | 14 | 15 | 14.82 | 1 | | | | MCYRR-12
MCYR-12 | MCYRR-12-S
MCYR-12-S | 12 | 11.992 | 32 | 14 | 15 | 14.82 | 1 | | | | MCYRR-15
MCYR-15 | MCYRR-15-S
MCYR-15-S | 15 | 14.992 | 35 | 18 | 19 | 18.79 | 1 | | | | MCYRR-17
MCYR-17 | MCYRR-17-S
MCYR-17-S | 17 | 16.992 | 40 | 20 | 21 | 20.79 | 1.5 | | | | MCYRR-20
MCYR-20 | MCYRR-20-S
MCYR-20-S | 20 | 19.990 | 47 | 24 | 25 | 24.79 | 1.5 | | | | MCYRR-25
MCYR-25 | MCYRR-25-S
MCYR-25-S | 25 | 24.990 | 52 | 24 | 25 |
24.79 | 1.5 | | | | MCYRR-30
MCYR-30 | MCYRR-30-S
MCYR-30-S | 30 | 29.990 | 62 | 28 | 29 | 28.79 | 1.5 | | | | MCYRR-35
MCYR-35 | MCYRR-35-S
MCYR-35-S | 35 | 34.988 | 72 | 28 | 29 | 28.79 | 2 | | | | MCYRR-40
MCYR-40 | MCYRR-40-S
MCYR-40-S | 40 | 39.988 | 80 | 30 | 32 | 31.75 | 2 | | | | MCYRR-45
MCYR-45 | MCYRR-45-S
MCYR-45-S | 45 | 44.988 | 85 | 30 | 32 | 31.75 | 2 | | | | MCYRR-50
MCYR-50 | MCYRR-50-S
MCYR-50-S | 50 | 49.988 | 90 | 30 | 32 | 31.75 | 2 | | | Standard bearing has a crowned roller outside diameter. For straight cylindrical outside diameter, add suffix "X". (Example - MCYRR-15-X or MCYR-15-SX) Tolerance limits for Roller Diameter are shown below. ## Cylindrical Roller Dia. "RD" | RD (N | NOM.) | TOLERANCE | | | | |-------|-------|-----------|--------|--|--| | OVER | INCL. | MAX. | MIN. | | | | mm | mm | mm | mm | | | | 6 | 18 | 0 | -0.008 | | | | 18 | 30 | 0 | -0.009 | | | | 30 | 50 | 0 | -0.011 | | | | 50 | 80 | 0 | -0.013 | | | | 80 | 120 | 0 | -0.015 | | | #### Crowned Roller Dia. "RD" | RD (f | NOM.) | TOLERANCE | | | | |-------|-------|-----------|--------|--|--| | OVER | INCL. | MAX. | MIN. | | | | mm | mm | mm | mm | | | | 6 | 120 | 0 | -0.050 | | | ## **MCYR SERIES** **MCYRR-S** | | | | MOUN | NTING DIMEN | ISIONS | | LIMITING | SPEED | | LOAD F | RATINGS | | | |---------------------|------------------------------------|---|--------|---|--------|-----------------------|----------------|----------------|--------------------------|------------------|--------------------------|-----------------|----------------| | BEARING BEARING | SEALED
BEARING
NUMBER
(1) | SHAFT DIA LOOSE FIT FOR LIGHT LOADS 96 | | METER (3) LIGHT TRANSITION FIT FOR MEDIUM LOADS h6 | | CLAMPING
DIA.
E | GREASE
(4) | OIL
(4) | ISO/ABM
LOAD R
NEW | ATINGS | TRACK I
LOAD R
NEW | ATINGS | MASS | | | | MAX. | MIN. | MAX. | MIN. | MIN. | | | DYNAMIC | STATIC | DYNAMIC | STATIC | | | | | mm | mm | mm | mm | mm | rpm | rpm | | | (5) | | kg | | MCYRR-5
MCYR-5 | MCYRR-5-S
MCYR-5-S | 4.996 | 4.988 | 5 | 4.992 | 11 | 19500
13000 | 25000
17000 | 4120
6960 | 4120
8340 | 3430
5790 | 3380
6900 | 0.011
0.014 | | MCYRR-6
MCYR-6 | MCYRR-6-S
MCYR-6-S | 5.996 | 5.988 | 6 | 5.992 | 13 | 15500
10500 | 20000
13500 | 4510
8040 | 5000
10490 | 3730
6670 | 4090
8760 | 0.018
0.021 | | MCYRR-8
MCYR-8 | MCYRR-8-S
MCYR-8-S | 7.995 | 7.986 | 8 | 7.991 | 16 | 12500
8400 | 16000
11000 | 6860
11470 | 7750
15200 | 5690
9610 | 6450
12600 | 0.040
0.043 | | MCYRR-10
MCYR-10 | MCYRR-10-S
MCYR-10-S | 9.995 | 9.986 | 10 | 9.991 | 19 | 9600
6400 | 12500
8300 | 8240
13340 | 9710
18240 | 6860
11080 | 8050
15300 | 0.060
0.062 | | MCYRR-12
MCYR-12 | MCYRR-12-S
MCYR-12-S | 11.994 | 11.983 | 12 | 11.989 | 21 | 8100
5400 | 1 0500
7000 | 8730
14420 | 10890
20890 | 7260
12060 | 9120
17400 | 0.067
0.069 | | MCYRR-15
MCYR-15 | MCYRR-15-S
MCYR-15-S | 14.994 | 14.983 | 15 | 14.989 | 24 | 6300
4200 | 8200
5400 | 13040
20300 | 19030
34130 | 10890
16970 | 15900
28500 | 0.102
0.105 | | MCYRR-17
MCYR-17 | MCYRR-17-S
MCYR-17-S | 16.994 | 16.983 | 17 | 16.989 | 27 | 4900
3300 | 6400
4300 | 15990
23240 | 23730
38540 | 13340
19420 | 19700
32200 | 0.150
0.153 | | MCYRR-20
MCYR-20 | MCYRR-20-S
MCYR-20-S | 19.993 | 19.980 | 20 | 19.987 | 30 | 3900
2600 | 5000
3400 | 21280
30790 | 35700
57670 | 17750
25690 | 29800
48000 | 0.252
0.255 | | MCYRR-25
MCYR-25 | MCYRR-25-S
MCYR-25-S | 24.993 | 24.980 | 25 | 24.987 | 36 | 3300
2200 | 4300
2900 | 22950
34130 | 41780
70410 | 19120
28440 | 34900
58700 | 0.278
0.284 | | MCYRR-30
MCYR-30 | MCYRR-30-S
MCYR-30-S | 29.993 | 29.980 | 30 | 29.987 | 44 | 2500
1700 | 3200
2200 | 34030
49720 | 65120
107290 | 28340
41480 | 54300
89000 | 0.465
0.476 | | MCYRR-35
MCYR-35 | MCYRR-35-S
MCYR-35-S | 34.991 | 34.975 | 35 | 34.984 | 52 | 2200
1500 | 2800
1900 | 38930
56880 | 72960
120230 | 32460
47370 | 60900
100000 | 0.636
0.649 | | MCYRR-40
MCYR-40 | MCYRR-40-S
MCYR-40-S | 39.991 | 39.975 | 40 | 39.984 | 58 | 1900
1300 | 2400
1700 | 49720
70020 | 94440
147990 | 41480
58350 | 78700
123000 | 0.825
0.845 | | MCYRR-45
MCYR-45 | MCYRR-45-S
MCYR-45-S | 44.991 | 44.975 | 45 | 44.984 | 63 | 1800
1200 | 2300
1500 | 51190
73750 | 101010
163190 | 42760
61490 | 84100
136000 | 0.901
0.924 | | MCYRR-50
MCYR-50 | MCYRR-50-S
MCYR-50-S | 44.991 | 49.975 | 50 | 49.984 | 68 | 1600
1100 | 2000
1400 | 54720
77180 | 113570
178390 | 45600
64330 | 94800
148000 | 0.960
0.984 | For a tight fit and heavy loads, use ISO tolerance j6. Since load, lubrication method, temperature and other factors affect the maximum operating speed, it is impossible to determine precise limiting speed. The listed limiting speeds are based on lightly loaded bearings having adequate lubrication and are listed only as a design guide. If grease lubricated, frequent relubrications is required. Actual bearing testing in the specific application should be conducted if the anticipated operating speed approaches the listed limiting speed. Dynamic load should not exceed 50% of Dynamic Rating as a track roller. #### **MCFD SERIES** #### **STUD TYPE** Series MCFD — Shielded, full complement of cylindrical rollers #### **MCFD** | BEARING | ROLLER
DIA.
RD
(1) | ROLLER
WIDTH
W | STUD DIA.
SD | STUD
L'GTH.
SL | OVERALL
LENGTH
L | ENDPLATE
EXTENSION
E | THREAD | THREAD
LENGTH
TL | OIL I | HOLE | REAMED
HOLE
D | |---------|-----------------------------|----------------------|-----------------|----------------------|------------------------|----------------------------|---------|------------------------|------------|------------|---------------------| | NO. | NOM. | +0.00
-0.12 | NOM. | NOM. | ном. | ном. | | NOM. | HC
NOM. | HD
NOM. | ном. | | | mm | MCFD-35 | 35 | 18 | 16 | 32.5 | 52 | 0.8 | M16x1.5 | 17 | 8 | 3 | 6 | | MCFD-40 | 40 | 20 | 18 | 36.5 | 58 | 0.8 | M18x1.5 | 19 | 8 | 3 | 6 | | MCFD-47 | 47 | 24 | 20 | 40.5 | 66 | 0.8 | M20x1.5 | 21 | 9 | 4 | 8 | | MCFD-52 | 52 | 24 | 20 | 40.5 | 66 | 0.8 | M20x1.5 | 21 | 9 | 4 | 8 | | MCFD-62 | 62 | 29 | 24 | 49.5 | 80 | 0.8 | M24x1.5 | 25 | 11 | 4 | 8 | | MCFD-72 | 72 | 29 | 24 | 49.5 | 80 | 0.8 | M24x1.5 | 25 | 11 | 4 | 8 | | MCFD-80 | 80 | 35 | 30 | 63.0 | 100 | 1.0 | M30x1.5 | 32 | 15 | 4 | 8 | | MCFD-90 | 90 | 35 | 30 | 63.0 | 100 | 1.0 | M30x1.5 | 32 | 15 | 4 | 8 | | BEARING | RADIUS DIA. | | CLAMPING
TORQUE
(3) | LIMITING
SPEED
(2) | | HOUSING BORE
DIA. | | LOAD RATING (NEWTONS) | | | | BRG.
MASS
(APPROX.) | |------------|-------------|------|---------------------------|--------------------------|------|----------------------|--------------------|-----------------------|--------------------------------|---------|--------|---------------------------| | NO. MIN. C | | MÀX. | GREASE | OIL | mm | | ISO LOAD
RATING | | LOAD RATING
AS TRACK ROLLER | | | | | | mm | mm | NOM. | rpm | rpm | MIN. | MAX. | DYNAMIC | STATIC | DYNAMIC | STATIC | Kg | | MCFD-35 | 0.6 | 21 | 57 | 6500 | 8500 | 16.000 | 16.018 | 23000 | 27000 | 16000 | 18000 | .165 | | MCFD-40 | 1.0 | 23 | 85 | 5500 | 7200 | 18.000 | 18.018 | 25000 | 31000 | 18000 | 22000 | .242 | | MCFD-47 | 1.0 | 27 | 118 | 4200 | 5500 | 20.000 | 20.021 | 38000 | 48000 | 27000 | 32000 | .380 | | MCFD-52 | 1.0 | 21 | 118 | 3400 | 4400 | 20.000 | 20.021 | 42000 | 57000 | 30000 | 35000 | .450 | | MCFD-62 | 1.0 | 38 | 216 | 2600 | 3400 | 24.000 | 24.021 | 58000 | 76000 | 41000 | 48000 | .795 | | MCFD-72 | 1.1 | 44 | 216 | 2100 | 2700 | 24.000 | 24.021 | 64000 | 89000 | 46000 | 57000 | 1.010 | | MCFD-80 | 1.1 | 47 | 441 | 1800 | 2300 | 30.000 | 30.021 | 94000 | 129000 | 67000 | 91000 | 1.540 | | MCFD-90 | 1.1 | 47 | 441 | 1800 | 2300 | 30.000 | 30.021 | 94000 | 129000 | 67000 | 101000 | 1.960 | - (1) Standard bearing has a crowned roller outside diameter. For straight cylindrical outside diameter, add suffix "X". (Example MCFD-35-X) (2) Since load, lubrication method, temperature and other factors affect the maximum operating speed, it is impossible to determine precise limiting speed. The listed limiting speeds are based on lightly loaded bearings having adequate lubrication and are listed only as a design guide. If grease lubricated, frequent relubrication is required. Actual bearing testing in the specific application should be conducted if the anticipated operating speed approaches the listed limiting speed. - (3) Clamping torque is based on dry threads. If threads are lubricated, use half of value shown. #### Tolerance limits for Cylindrical Roller Dia. "RD" | RD (f | NOM.) | TOLERANCE | | | | |-------|-------|-----------|--------|--|--| | OVER | INCL. | MAX. | MIN. | | | | mm | mm | mm | mm | | | | 30 | 50 | 0 | -0.011 | | | | 50 | 80 | 0 | -0.013 | | | | 80 | 120 | 0 | -0.015 | | | #### Tolerance limits for Crowned Roller Dia. "RD" | RD (N | юм.) | TOLERANCE | | | | |-------|-------|-----------|--------|--|--| | OVER | INCL. | MAX. | MIN. | | | | mm | mm | mm | mm | | | | 30 | 120 | 0 | -0.050 | | | #### Tolerance limits for Stud Dia. "SD" | SD (N | юм.) | TOLERANCE | | | | | |-------|-------|-----------|--------|--|--|--| | OVER | INCL. | MAX. | MIN. | | | | | mm | mm | mm | mm | | | | | 10 | 18 | 0 | -0.018 | | | | | 18 | 30 | 0 | -0.021 | | | | ## **MCYRD SERIES** #### **YOKE TYPE** Series MCYRD — Shielded, full complement of cylindrical rollers | BEARING | BORE | E DIA.
B | ROLLER
DIA.
RD | W.
+0.00 | WIE | RING
OTH
VI | | NER
GHT
IN. | DIA. LOAD RATING (NEWTONS) | | LOAD RATING (NEWTONS) | |
LIMITING
SPEED | BRG.
MASS | | |----------|------|-------------|----------------------|-------------|------|-------------------|-----|-------------------|----------------------------|--------------------|-----------------------|--------------------------------|-------------------|--------------|-----------| | NO. | MAX. | MIN. | (1) | -0.12 | MAX. | MIN. | Ro | Ri | NOM. | ISO LOAD
RATING | | LOAD RATING
AS TRACK ROLLER | | (2) | (APPROX.) | | | mm DYNAMIC | STATIC | DYNAMIC | STATIC | RPM | Kg | | MCYRD-15 | 15 | 14.992 | 35 | 18 | 19 | 18.79 | 0.6 | 0.3 | 20 | 23000 | 27000 | 16000 | 18000 | 6500 | 0.099 | | MCYRD-17 | 17 | 16.992 | 40 | 20 | 21 | 20.79 | 1.0 | 0.3 | 22 | 25000 | 31000 | 18000 | 22000 | 5500 | 0.147 | | MCYRD-20 | 20 | 19.990 | 47 | 24 | 25 | 24.79 | 1.0 | 0.3 | 27 | 38000 | 48000 | 27000 | 32000 | 4200 | 0.245 | | MCYRD-25 | 25 | 24.990 | 52 | 24 | 25 | 24.79 | 1.0 | 0.3 | 31 | 42000 | 57000 | 30000 | 35000 | 3400 | 0.281 | | MCYRD-30 | 30 | 29.990 | 62 | 28 | 29 | 28.79 | 1.0 | 0.3 | 38 | 58000 | 76000 | 41000 | 47000 | 2600 | 0.465 | | MCYRD-35 | 35 | 34.988 | 72 | 28 | 29 | 28.79 | 1.1 | 0.6 | 44 | 64000 | 89000 | 46000 | 57000 | 2100 | 0.630 | | MCYRD-40 | 40 | 39.988 | 80 | 30 | 32 | 31.75 | 1.1 | 0.6 | 51 | 89000 | 130000 | 64000 | 71000 | 1600 | 0.816 | | MCYRD-45 | 45 | 44.988 | 85 | 30 | 32 | 31.75 | 1.1 | 0.6 | 55 | 94000 | 143000 | 67000 | 72000 | 1400 | 0.883 | | MCYRD-50 | 50 | 49.988 | 90 | 30 | 32 | 31.75 | 1.1 | 0.6 | 60 | 99000 | 156000 | 71000 | 77000 | 1300 | 0.950 | - (1) Standard bearing has a crowned roller outside diameter. For straight cylindrical outside diameter, add suffix "X". (Example MCYRD-15-X) - Since load, lubrication method, temperature and other factors affect the maximum operating speed, it is impossible to determine precise limiting speed. The listed limiting speeds are based on lightly loaded bearings having adequate lubrication and are listed only as a design guide. If grease lubricated, frequent relubrication is required. Actual bearing testing in the specific application should be conducted if the anticipated operating speed approaches the listed limiting speed. Positive clamping across endplates required to insure proper end play after mounting. ## Tolerance limits for roller diameter #### Cylindrical Roller Dia. "RD" | RD (N | NOM.) | TOLERANCE | | | | |-------|-------|-----------|--------|--|--| | OVER | INCL. | MAX. | MIN. | | | | mm | mm | mm | mm | | | | 6 | 18 | 0 | -0.008 | | | | 18 | 30 | 0 | -0.009 | | | | 30 | 50 | 0 | -0.011 | | | | 50 | 80 | 0 | -0.013 | | | | 80 | 120 | 0 | -0.015 | | | #### Crowned Roller Dia. "RD" | RD (N | NOM.) | TOLERANCE | | | | |-------|-------|-----------|--------|--|--| | OVER | INCL. | MAX. | MIN. | | | | mm | mm | mm | mm | | | | 6 | 120 | 0 | -0.050 | | | ## **ECCENTRIC COLLAR DESIGNS** ## (For other dimensions refer to tabulated chart) | BASIC
BEARING
NUMBER | G*
+0.05
-0.15 | | BD
nm | ECC.
• ECCENTRICITY | RECOMMENDED
HOUSING BORE
DIA.
+0.025
-0.000 | |----------------------------|----------------------|--------|----------|------------------------|---| | | mm | MIN. | MAX. | mm | mm | | 16 | 7 | 8.964 | 9.000 | 0.5 | 9.050 | | 19 | 9 | 10.957 | 11.000 | 0.5 | 11.050 | | 22 | 10 | 12.957 | 13.000 | 0.5 | 13.050 | | 22A | 10 | 12.957 | 13.000 | 0.5 | 13.050 | | 26 | 10 | 12.957 | 13.000 | 0.5 | 13.050 | | 26A | 10 | 12.957 | 13.000 | 0.5 | 13.050 | | 30 | 11 | 14.957 | 15.000 | 0.5 | 15.050 | | 32 | 11 | 14.957 | 15.000 | 0.5 | 15.050 | | 35 | 14 | 19.948 | 20.000 | 1.0 | 20.050 | | 40 | 16 | 21.948 | 22.000 | 1.0 | 22.050 | | 40A | 16 | 21.948 | 22.000 | 1.0 | 22.050 | | 47 | 18 | 23.948 | 24.000 | 1.0 | 24.050 | | 47A | 18 | 23.948 | 24.000 | 1.0 | 24.050 | | 52 | 18 | 23.948 | 24.000 | 1.0 | 24.050 | | 52A | 18 | 23.948 | 24.000 | 1.0 | 24.050 | | 62 | 22 | 27.948 | 28.000 | 1.0 | 28.050 | | 62A | 22 | 27.948 | 28.000 | 1.0 | 28.050 | | 72 | 22 | 27.948 | 28.000 | 1.0 | 28.050 | | 72A | 22 | 27.948 | 28.000 | 1.0 | 28.050 | | 80 | 29 | 34.938 | 35.000 | 1.5 | 35.050 | | 85 | 29 | 34.938 | 35.000 | 1.5 | 35.050 | | 90 | 29 | 34.938 | 35.000 | 1.5 | 35.050 | $^{^{\}ast} For positive clamping, housing thickness should be 0.3 mm greater than G dimension.$ ## **INTERCHANGEABILITY CHARTS** #### STUD TYPE METRIC CAM FOLLOWERS: Needle Roller Cage and Full Complement Types | Mo | GILL | INA SI | KF NTN | IKO | THK | |----------|--------------------|---------|--------------------|---------|--------------------| | IVIC | | IIVA 31 | | IKO | | | CAGE | FULL
COMPLEMENT | CAGE | FULL
COMPLEMENT | CAGE | FULL
COMPLEMENT | | MCFR-13 | - | - | - | CF5 | - | | MCFR-16 | MCF-16 | KR-16 | KRV-16 | CF6R | CF6VR | | MCFR-19 | MCF-19 | KR-19 | KRV-19 | CF8R | CF8VR | | MCFR-22 | MCF-22 | KR-22 | KRV-22 | - | - | | MCFR-22A | MCF-22A | - | - | CF10R | CF10VR | | MCFR-26 | MCF-26 | KR-26 | KRV-26 | - | - | | MCFR-26A | MCF-26A | - | - | CF10-1R | CF10-1VR | | MCFR-30 | MCF-30 | KR-30 | KRV-30 | CF12R | CF12VR | | MCFR-32 | MCF-32 | KR-32 | KRV-32 | CF12-1R | CF12-1VR | | MCFR-35 | MCF-35 | KR-35 | KRV-35 | CF16R | CF16VR | | MCFR-40 | MCF-40 | KR-40 | KRV-40 | - | - | | MCFR-40A | MCF-40A | - | - | CF18R | CF18VR | | MCFR-47 | MCF-47 | KR-47 | KRV-47 | - | - | | MCFR-47A | MCF-47A | - | - | CF20-1R | CF20-1VR | | MCFR-52 | MCF-52 | KR-52 | KRV-52 | - | - | | MCFR-52A | MCF-52A | - | - | CF20R | CF20VR | | MCFR-62 | MCF-62 | KR-62 | KRV-62 | , | - | | MCFR-62A | MCF-62A | - | - | CF24R | CF24VR | | MCFR-72 | MCF-72 | KR-72 | KRV-72 | - | - | | MCFR-72A | MCF-72A | - | - | CF24-1R | CF24-1VR | | MCFR-80 | MCF-80 | KR-80 | KRV-80 | CF30R | CF30VR | | MCFR-85 | MCF-85 | KR-85 | - | CF30-1R | CF30-1VR | | MCFR-90 | MCF-90 | KR-90 | KRV-90 | CF30-2R | CF30-2VR | #### HEAVY-DUTY Cylindrical Roller Type | McGILL | INA FAG NTN | | | |---------|-------------|--|--| | MCFD-35 | NUKR-35 | | | | MCFD-40 | NUKR-40 | | | | MCFD-47 | NUKR-47 | | | | MCFD-52 | NUKR-52 | | | | MCFD-62 | NUKR-62 | | | | MCFD-72 | NUKR-72 | | | | MCFD-80 | NUKR-80 | | | | MCFD-90 | NUKR-90 | | | ## YOKE TYPE METRIC CAM FOLLOWERS: Needle Roller Cage and Full Complement Types | McGILL | | INA- S | KF NTN | IKO | тнк | |----------|--------------------|---------|--------------------|----------|--------------------| | CAGE | FULL
COMPLEMENT | CAGE | FULL
COMPLEMENT | CAGE | FULL
COMPLEMENT | | MCYRR-5 | MCYR-5 | NATR-5 | NATV-5 | NART-5R | NART-5VR | | MCYRR-6 | MCYR-6 | NATR-6 | NATV-6 | NART-6R | NART-6VR | | MCYRR-8 | MCYR-8 | NATR-8 | NATV-8 | NART-8R | NART-8VR | | MCYRR-10 | MCYR-10 | NATR-10 | NATV-10 | NART-10R | NART-10VR | | MCYRR-12 | MCYR-12 | NATR-12 | NATV-12 | NART-12R | NART-12VR | | MCYRR-15 | MCYR-15 | NATR-15 | NATV-15 | NART-15R | NART-15VR | | MCYRR-17 | MCYR-17 | NATR-17 | NATV-17 | NART-17R | NART-17VR | | MCYRR-20 | MCYR-20 | NATR-20 | NATV-20 | NART-20R | NART-20VR | | MCYRR-25 | MCYR-25 | NATR-25 | NATV-25 | NART-25R | NART-25VR | | MCYRR-30 | MCYR-30 | NATR-30 | NATV-30 | NART-30R | NART-30VR | | MCYRR-35 | MCYR-35 | NATR-35 | NATV-35 | NART-35R | NART-35VR | | MCYRR-40 | MCYR-40 | NATR-40 | NATV-40 | NART-40R | NART-40VR | | MCYRR-45 | MCYR-45 | NATR-45 | - | NART-45R | NART-45VR | | MCYRR-50 | MCYR-50 | NATR-50 | NATV-50 | NART-50R | NART-50VR | #### HEAVY-DUTY Cylindrical Roller Type | McGILL | INA FAG | NTN | | |----------|---------|----------|--| | MCYRD-15 | NUTR-15 | NUTR-202 | | | MCYRD-17 | NUTR-17 | NUTR-203 | | | MCYRD-20 | NUTR-20 | NUTR-204 | | | MCYRD-25 | NUTR-25 | NUTR-205 | | | MCYRD-30 | NUTR-30 | NUTR-206 | | | MCYRD-35 | NUTR-35 | NUTR-207 | | | MCYRD-40 | NUTR-40 | NUTR-208 | | | MCYRD-45 | NUTR-45 | NUTR-209 | | | MCYRD-50 | NUTR-50 | NUTR-210 | | ## Coding for Other Cam Follower and Yoke Roller Types | OPTIONAL
FEATURES | McGILL | INA SKF | IKO | - NTN | тнк | |----------------------|----------------|-----------------|-------------------|-----------------|-------------------| | Seals** | Add Suffix "S" | Add Suffix "PP" | Add Suffix "UU" | Add Suffix "LL" | Add Suffix "UU" | | Cylindrical OD | Add Suffix "X" | Add Suffix "X" | Remove Suffix "R" | Add Suffix "X" | Remove Suffix "R" | | Hexagonal Hole* | Add Suffix "B" | Add Suffix "SK" | Add Suffix "B" | Add Suffix "H" | Add Suffix "A" | | Eccentric Collar* | Add Prefix "E" | Add Prefix "E" | Add Prefix "E" | - | - | ^{*}Not applicable for yoke roller types $^{^{\}ast}\,^{\ast}$ Not applicable for heavy-duty cylindrical roller type. **Regal Power Transmission Solutions** 7120 New Buffington Road Florence, KY 41042 Customer Service: 800-626-2120 800-262-3292 Technical Service: 800-626-2093 www.RegalPTS.com #### APPLICATION CONSIDERATIONS APPLICATION CONSIDERATIONS The proper selection and application of power transmission products and components, including the related area of product safety, is the responsibility of the customer. Operating and performance requirements and potential associated issues will vary appreciably depending upon the use and application of such products and components. The scope of the technical and application information included in this publication is necessarily limited. Unusual operating environments and conditions, lubrication requirements, loading supports, and other factors can materially affect the application and operating results of the products and components and the customer should carefully review its requirements. Any technical advice or review furnished by Regal Beloit America, inc., and its affiliates with respect to the use of products and components is given in good faith and without charge, and Regal assumes no obligation or liability for the advice given, or results obtained, all such advice and review being given and accepted at customer's risk. For a copy of our Standard Terms and Conditions of Sale, Disclaimers of Warranty, Limitation of Liability and Remedy, please contact Customer Service at 1-800-626-2120.
These terms and conditions of Sale, disclaimers and limitations of liability apply to any person who may buy, acquire or use a Regal Beloit America Inc. product referred to herein, including any person who buys from a licensed distributor of these branded products. A Regal Brand www.regalbeloit.com