

Shaft Guidance Systems

Linear bearings, linear bearing and housing units
Solid shafts, hollow shafts
Shaft and support rail units
Shaft support blocks

All data have been prepared with a great deal of care and checked for their accuracy but no liability can be accepted for any errors or omissions. We reserve the right to make technical modifications.

© Schaeffler Technologies GmbH & Co. KG Issued: 2014, February

Reproduction in whole or in part without our authorisation is prohibited.

Foreword

Shaft guidance systems comprise shafts or shaft and support rail units combined with low-friction linear ball or plain bearings. The shafts can be either solid or hollow shafts, shaft and support rail units are always solid. For ease of fixing to the adjacent construction, the guidance systems are also available as complete linear bearing and housing units.

Economical due to modular concept

The complete range, structured according to a modular concept, allows particularly application-oriented, technically up-to-date and highly economical linear bearing guidance systems with a long, maintenance-free operating life.

Bearings and units are available in the compact, light, heavy duty, machined and plain bearing range. Each series has highly specific characteristics that precisely define it as suitable for particular applications.

Linear bearings

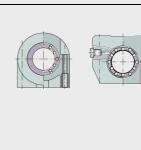
Linear ball bearings can support high radial loads while having a relatively low mass and allow the construction of linear guidance systems with unlimited travel. The bearings are available in closed versions and with a segment cutout for supported shafts. In some series, the radial clearance can be adjusted. This makes it possible to achieve clearance-free or preloaded guidance systems. Depending on the application, the linear bearings do not have seals or are fitted with contact seals on both sides.

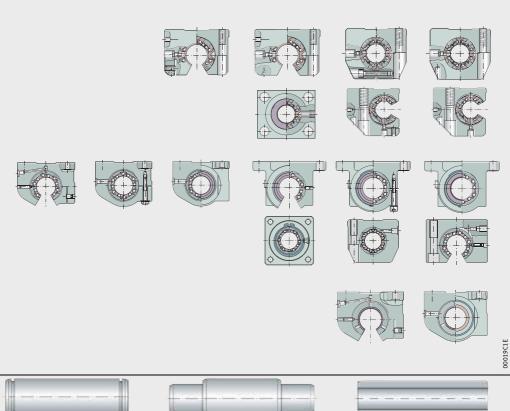
Linear bearing and housing units

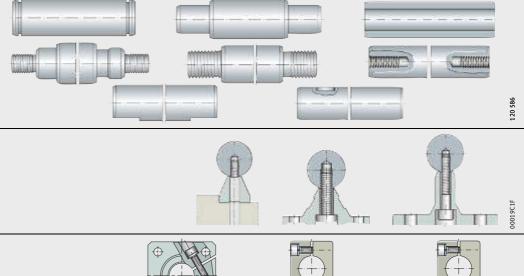
In the case of the linear bearing and housing units, the bearing is integrated in a strong, rigid housing. The housings are available in closed, open, slotted and tandem versions. Due to their low total mass, the units are particularly suitable for reduced mass designs with high loads and where higher accelerations and travel velocities are required. As a result of volume production in large quantities, the complete units are normally considerably more economical than customers' own designs.

Contents

	Page
Product index	6
Product overview	10
Shaft guidance systems	
Technical principles	12
Linear bearings, linear bearing and housing units	44
Solid shafts, hollow shafts	104
Shaft and support rail units	128
Shaft support blocks	144
Addrassas	156

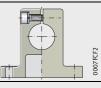

Product index

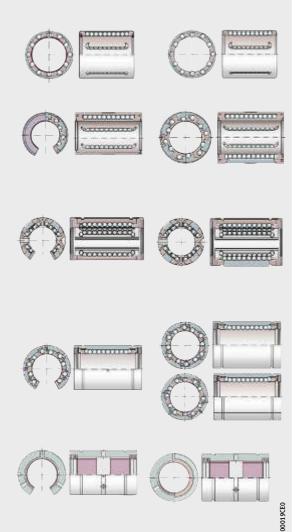

	P	age
KH	Linear ball bearing, compact range	48
KGHAPP	Linear ball bearing and housing unit, compact range, closed, sealed	48
KGHKB-PP-AS	Linear ball bearing and housing unit, compact range, closed, sealed, relubrication facility	48
KTHKB-PP-AS	Linear ball bearing and housing unit, compact range, closed, bearings in tandem arrangement, sealed, relubrication facility	48
KNB	Linear ball bearing, light range, closed, self-aligning	48
KNOB	Linear ball bearing, light range, segment cutout, self-aligning	48
KS	Linear ball bearing, heavy duty range, closed, self-aligning	49
KSO	Linear ball bearing, heavy duty range, segment cutout, self-aligning	49
KGSCPP-AS	Linear ball bearing and housing unit, heavy duty range, segment cutout, sealed, relubrication facility	49
KGSCSPP-AS	Linear ball bearing and housing unit, heavy duty range, segment cutout, slotted housing, sealed, relubrication facility	49
KGSNGPP-AS	Linear ball bearing and housing unit, heavy duty range, closed, sealed, relubrication facility	
KGSNOPP-AS	Linear ball bearing and housing unit, heavy duty range, segment cutout, sealed, relubrication facility	49
KGSNOSPP-AS	Linear ball bearing and housing unit, heavy duty range, segment cutout, slotted housing, sealed, relubrication facility	49
KGSNSPP-AS	Linear ball bearing and housing unit, heavy duty range, slotted housing, sealed, relubrication facility	49
KTFS	Linear ball bearing and housing unit, heavy duty range, closed, bearings in tandem arrangement, with centring collar, sealed, relubrication facility	49

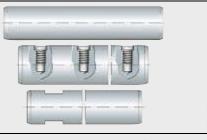

		Page
KTSGPP-AS	Linear ball bearing and housing unit, heavy duty range, closed, bearings in tandem arrangement, sealed, relubrication facility	49
KTSOPP-AS	Linear ball bearing and housing unit, heavy duty range, bearings in tandem arrangement, segment cutout, sealed, relubrication facility	49
KTSOSPP-AS	Linear ball bearing and housing unit, heavy duty range, bearings in tandem arrangement, segment cutout, slotted housing, sealed, relubrication facility	49
KTSSPP-AS	Linear ball bearing and housing unit, heavy duty range, closed, bearings in tandem arrangement, slotted housing, sealed, relubrication facility	49
КВ	Linear ball bearing, machined range, closed	50
КВО	Linear ball bearing, machined range, closed, segment cutout	50
KBS	Linear ball bearing, machined range, slotted	50
KFBB-PP-AS	Linear ball bearing and housing unit, machined range, closed, with flange, sealed, relubrication facility	51
KGBPP-AS	Linear ball bearing and housing unit, machined range, closed, sealed, relubrication facility	
KGBAPP-AS	Linear ball bearing and housing unit, machined range, closed, sealed, relubrication facility	50
KGBAOPP-AS	Linear ball bearing and housing unit, machined range, segment cutout, sealed, relubrication facility	50
KGBASPP-AS	Linear ball bearing and housing unit, machined range, slotted housing, sealed, relubrication facility	50
KGBOPP-AS	Linear ball bearing and housing unit, machined range, segment cutout, sealed, relubrication facility	50
KGBSPP-AS	Linear ball bearing and housing unit, machined range, slotted housing, sealed, relubrication facility	50

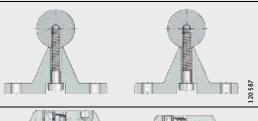
Product index

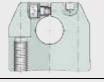
	I	Page
KTBPP-AS	Linear ball bearing and housing unit, machined range, closed, bearings in tandem arrangement, sealed, relubrication facility	50
KTBOPP-AS	Linear ball bearing and housing unit, machined range, segment cutout, bearings in tandem arrangement, sealed, relubrication facility	50
PABPP-AS	Linear plain bearing, plain bearing range, closed, sealed, relubrication facility	51
PABOPP-AS	Linear plain bearing, plain bearing range, segment cutout, sealed, relubrication facility	51
PAGBAPP-AS	Linear plain bearing and housing unit, plain bearing range, closed, sealed, relubrication facility	51
PAGBAOPP-AS	Linear plain bearing and housing unit, plain bearing range, segment cutout, sealed, relubrication facility	51
W	Solid shafts	108
WH	Hollow shafts	108
TSNW	Shaft and support rail unit for fixing from above	132
TSNWG4	Shaft and support rail unit for fixing from above	132
TSNWG5	Shaft and support rail unit for fixing from above	132
TSUW	Shaft and support rail unit for fixing from below	132
TSWW	Shaft and support rail unit for fixing from above	132
TSWWA	Shaft and support rail unit for fixing from above	132
FWB	Shaft support block with flange	148
GW	Shaft support block	148
GWAB	Shaft support block	148
GWHB	Shaft support block	148
GWNB	Shaft support block	148





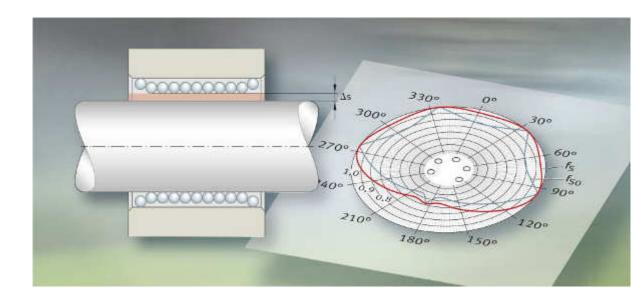



Technical principles


Linear bearings, linear bearing and housing units Compact range Light range Heavy duty range Machined range Plain bearing range

Solid shafts Hollow shafts

Shaft and support rail units



Shaft support blocks

Appendix

Technical principles

Load carrying capacity and life Friction Lubrication Design of bearing arrangements Operating clearance Fitting

		Page
Load carrying capacity and life	Basic rating life	15
	Operating life	16
	Static load safety factor	16
	Influence of the shaft raceway on basic load ratings Differences in raceway hardness	
	Load direction and position of the ball rows	18
	Linear ball bearings Linear ball bearing and housing units	
	Misalignment of the shaft Load factors in misalignment Compensation of misalignments	25
	in the light and heavy duty range	26
Friction	Coefficient of friction	
Lubrication	Grease lubrication	28 28
	Lubrication nipples for housings	
	Application in special environments	
	Oil lubrication	32
Design of bearing arrangements	Location Linear ball bearings KH Linear ball bearings KNB, KB, KS and plain bearings PAB Linear ball bearings KNOB, KBO and plain bearings PABO	33 33 34
	Linear ball bearing and housing units	
	Sealing	

Technical principles

	P	age
Operating clearance	Tolerance and operating clearance	37
	Mounting tolerances and operating clearance	38
Mounting	Mounting of bearings Linear ball bearings KH Linear ball bearings KNB, KNOB, KB, KBS, KBO, KS, KSO and linear plain bearings PAB, PABO	39
	Alignment of bearings and shafts Bearings arranged in series Bearings arranged in parallel Very long guidance systems with supported shaft Guidance systems with clearance-free or preloaded bearings Parallel shaft and support rail units	41 41 42 42
	Setting the operating clearance	43
	Suspended arrangement of guidance system	43

The size of a linear ball bearing is determined by the demands made in terms of load carrying capacity, rating life and operational security.

The load carrying capacity is described in terms of:

- the basic dynamic load rating C
- \blacksquare the basic static load rating C_0 .

The calculation of the basic dynamic and static load ratings given in the dimension tables is based on DIN 636-1.

Basic rating life

The basic rating life L is reached or exceeded by 90 % of a sufficiently large group of apparently identical bearings before the first evidence of material fatigue occurs.

$$L = \left(\frac{C}{P}\right)^3$$

$$L_h = \frac{833}{H \cdot n_{osc}} \cdot \left(\frac{C}{P}\right)^3$$

$$L_{h} = \frac{1666}{\overline{y}} \cdot \left(\frac{C}{P}\right)^{3}$$

Basic rating life L in 100 000 m

Basic dynamic load rating

Equivalent dynamic bearing load

Basic rating life in operating hours

Single stroke length

 ${\rm min}^{-1}$

Number of return strokes per minute

m/min

Mean travel velocity.

Schaeffler Technologies

Load carrying capacity and life

Operating life

The operating life is defined as the life actually achieved by a shaft guidance system. It may differ significantly from the calculated life.

The following influences can lead to premature failure through wear or fatigue:

- misalignment between the guideways and guidance elements
- contamination
- inadequate lubrication
- reciprocating motion with very small stroke length (false brinelling)
- vibration during stoppage (false brinelling).

Due to the wide variety of mounting and operating conditions, it is not possible to precisely predetermine the operating life of a shaft guidance system. The safest way to arrive at an appropriate estimate of the operating life is comparison with similar applications.

Static load safety factor

The static load safety factor S_0 indicates the security against impermissible permanent deformations in the bearing and is determined by means of the following equation.

$$S_0 = \frac{C_0}{P_0}$$

 S_0 — Static load safety factor C_0 N Basic static load rating P_0 N Equivalent static load.

For linear ball bearings KH and KN..-B, the value must be $S_0 \ge 4$. In relation to guidance accuracy and smooth running, a value of $S_0 \ge 2$ is regarded as permissible. If $S_0 < 2$, please contact us.

Influence of the shaft raceway on the basic load ratings

The basic load ratings in the dimension tables are only valid if a ground (Ra 0,3) and hardened shaft (at least 670 HV) is provided as a raceway.

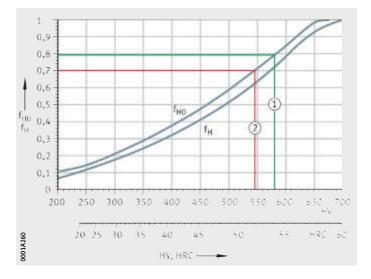
Differences in raceway hardness

If shafts with a surface hardness lower than 670 HV are used (for example, shafts made from X46 or X90), a hardness factor must be applied, see equations and Figure 1.

$$C_H = f_H \cdot C$$

$$C_{OH} = f_{HO} \cdot C_{O}$$

C_H ... Effective dynamic load rating


f_H – Dynamic hardness factor, *Figure 1*

Basic dynamic load rating

 C_{OH} N Effective static load rating

f_{H0} – Static hardness factor, *Figure 1*

Basic static load rating.

f_{H0} = static hardness factor f_H = dynamic hardness factor HV, HRC = surface hardness

> ① X90 ② X46

Figure 1 Static and dynamic hardness factors for lower hardness of raceways

Schaeffler Technologies

Load carrying capacity and life

Load direction and orientation of the ball rows

The effective load rating of a linear ball bearing is dependent on the position of the load direction in relation to the position of the ball rows:

- The lowest load rating C_{min} and C_{0 min} occurs at the zenith position, Figure 2.
- The highest load rating C_{max} and $C_{0 max}$ occurs at the symmetrical position, *Figure 2*.

If the bearings are mounted in correct alignment, the maximum load rating can be used. If aligned mounting is not possible or the direction of loading is not defined, the minimum load ratings must be assumed.

Main load direction

For linear ball bearings and linear ball bearing and housing units where the mounting position of the ball rows is defined, the basic load ratings C and C_0 in the main load direction are given, *Figure 3*. For other load directions, the effective load ratings can be determined using the load direction factors in *Figure 4*, page 20, to *Figure 21*, page 24.

If the mounting position of the ball rows is not defined, the minimum basic load ratings are stated.

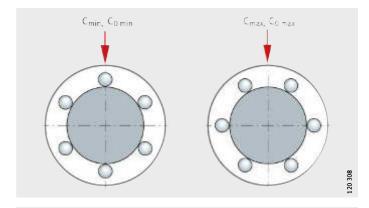
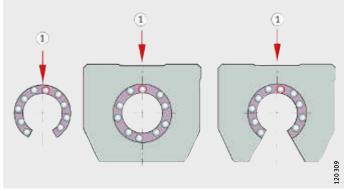



Figure 2
Load carrying capacity,
dependent on the position
of the ball rows

(1) Main load direction

Figure 3

Main load direction for bearings and housing units

Linear ball bearings

The basic load ratings given in the dimension tables are defined as follows:

- For KH, KN..-B, KS, KB and KBS, the minimum and maximum load ratings apply, Figure 2, page 18.
- For KNO..-B, KSO and KBO, the basic load ratings apply in the main load direction. In the case of other load directions, see Figure 4, page 20, to Figure 13, page 22.

Linear ball bearing and housing units

The basic load ratings given in the dimension tables are defined as follows:

Compact range

For the units KGHK, KTHK, the minimum load rating applies.

Heavy duty range

For the heavy duty range, the basic load rating applies in the main load direction. In the case of other load directions, see Figure 14 to Figure 17, page 23.

Machined range

For the units KGB, KGBA, KTB, KGBS, KGBAS, the minimum load rating applies.

For the open units KGBO, KGBAO, the basic load rating applies in the main load direction. In the case of other load directions, see Figure 20 to Figure 21, page 24.

Load direction factors

The factors in Figure 4, page 20, to Figure 13, page 22, are applied as follows:

$$C_w = f_S \cdot C$$

Effective dynamic load carrying capacity

Dynamic load factor for load direction

Basic dynamic load rating.

$$\mathsf{C}_{0w} = \mathsf{f}_{\mathsf{S}0} \cdot \mathsf{C}_0$$

 ${\sf C_{\sf Ow}}$ N Effective static load carrying capacity

Static load factor for load direction

C₀ N Basic static load rating.

Schaeffler Technologies

Load carrying capacity and life

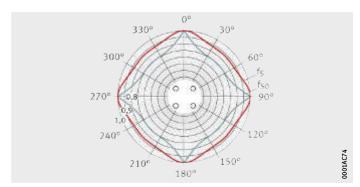


Figure 4
Compact range Load direction factor for KH06, KH08, KH10

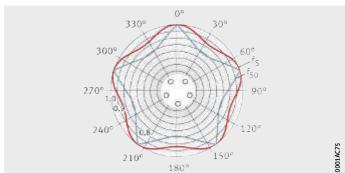


Figure 5
Compact range Load direction factor for KH12, KH14, KH16

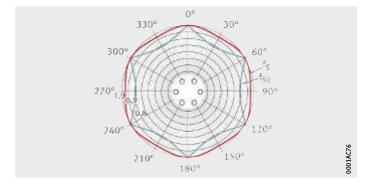


Figure 6
Compact range Load direction factor for KH20, KH25

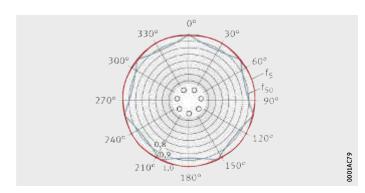


Figure 7
Compact range
Load direction factor
for KH30

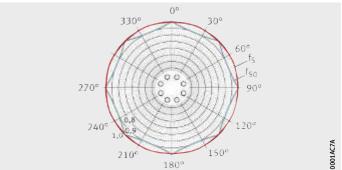


Figure 8
Compact range
Load direction factor
for KH40

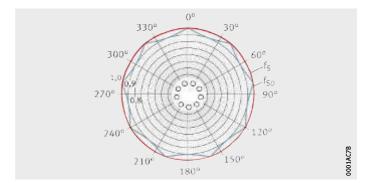


Figure 9
Compact range
Load direction factor
for KH50

Load carrying capacity and life

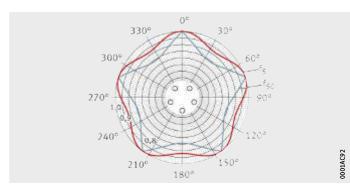


Figure 10 Light range Load direction factor for KN12-B, KN16-B

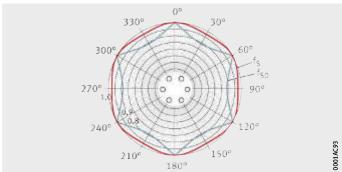


Figure 11 Light range Load direction factor for KN20-B, KN25-B, KN30-B, KN40-B, KN50-B

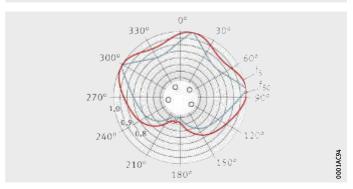


Figure 12 Light range Load direction factor for KNO12-B, KNO16-B

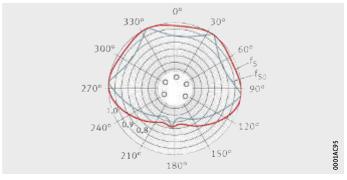
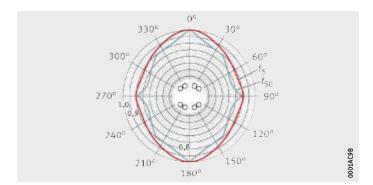



Figure 13 Light range Load direction factor for KNO20-B, KNO25-B, KNO30-B, KNO40-B, KNO50-B

Figure 14

Heavy duty range
Load direction factor
for KS12, KS16, KS20, KS25,
KS30, KS40, KS50

330°

300°

300°

60°

fs

fso

90°

120°

180°

150°

180°

Figure 15
Heavy duty range
Load direction factor
for KSO12, KSO16

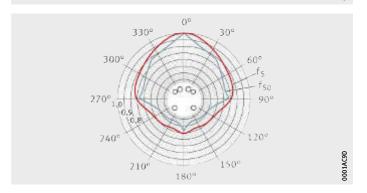


Figure 16 Heavy duty range Load direction factor for KSO20, KSO25

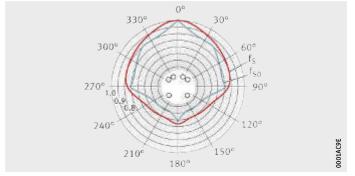
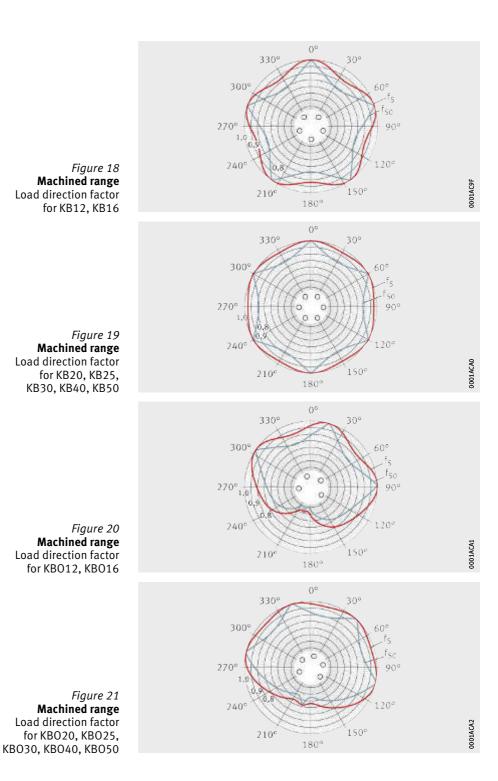



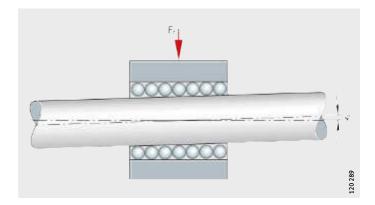
Figure 17 Heavy duty range Load direction factor for KSO30, KSO40, KSO50

Load carrying capacity and life

Misalignment of the shaft

Misalignment of the shaft impairs the running quality and operating life of linear ball bearings. Guidance systems with one shaft should therefore have at least two bearings, while guidance systems with two shafts should have at least three bearings.

Load factors in misalignment


Due to shaft flexing, it is not always possible to avoid misalignment, *Figure 22*. If it is present, load factors for misalignment should be applied, *Figure 23* and *Figure 24*, page 26.

$$P = K_F \cdot F_r$$

$$P_0 = K_{F0} \cdot F_r$$

$$P, P_0 \qquad N$$
Equivalent dynamic or static load
$$K_F, K_{F0} \qquad -$$
Dynamic or static load factor for misalignment,
$$Figure \ 23 \text{ or } Figure \ 24, \text{ page } 26$$

$$F_r \qquad N$$
Maximum radial bearing load
$$C, C_0 \qquad N$$
Basic radial dynamic or static load rating,
$$Figure \ 23 \text{ or } Figure \ 24, \text{ page } 26.$$

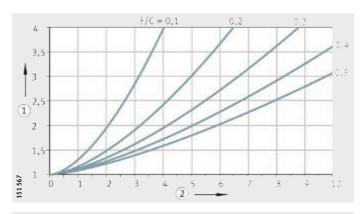

 $\begin{aligned} F_r &= radial\ load \\ \phi &= misalignment \end{aligned}$

Figure 22 Misalignment ϕ of the shaft

Load carrying capacity and life

 $\begin{tabular}{ll} \hline \begin{tabular}{ll} \$

Figure 23
Dynamic load factor for shaft misalignment

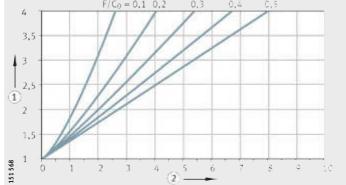


Figure 24
Static load factor for shaft misalignment

Compensation of misalignments in the light and heavy duty range

Linear ball bearings KN..-B, KNO..-B, KS and KSO and linear ball bearing and housing units containing these bearings are self-aligning. They can compensate misalignments of up to ± 30 angular minutes (KN..-B and KNO..-B) or ± 40 angular minutes (KS and KSO) without detrimental effect on the load carrying capacity.

Friction

Linear ball bearings are frequently used where high positional accuracy and high efficiency are a priority. The bearings must therefore run without stick-slip and with only low friction.

The linear ball bearings KN..-B, KNO..-B, KS, KSO, KB, KBS, KBO have particularly low friction.

Coefficient of friction

The total friction consists of:

- rolling and sliding friction at the rolling contacts (sliding friction in linear plain bearings)
- friction in the return zones and recirculation guides
- lubricant friction
- seal friction.

The factors on which the coefficient of friction depends may act in a reciprocal manner, may act in a single direction or may counteract each other.

Coefficient of friction in unsealed bearings

The coefficients of friction for unsealed linear bearings with oil lubrication are given in the table.

In the case of linear plain bearings, the coefficient of friction is between 0,02 and 0,2.

Series and coefficient of friction

Series	Coefficient of friction
KH	0,003 – 0,005
KNB, KNOB	0,001 - 0,0025
KS, KSO	0,001 - 0,0025
KB, KBS, KBO	0,001 - 0,0025

Lubrication

Open linear ball bearings are supplied with a wet or dry preservative and can be lubricated using either grease or oil. The oil-based preservative is compatible and miscible with lubricants with a mineral oil base, which means that it is not generally necessary to wash out the bearings before mounting.

Bearings with a dry preservative must be greased or oiled immediately after they are removed from the packaging.

Grease lubrication

Grease lubrication should be used in preference to oil lubrication, since the grease adheres to the inside of the bearing and thus prevents the ingress of contamination. This sealing effect protects the rolling elements against corrosion.

In addition, the design work involved in providing grease lubrication is less than that for providing oil, since design of the sealing arrangement is less demanding.

Composition of suitable greases

The greases for linear ball bearings have the following composition:

- lithium or lithium complex soap
- base oil: mineral oil or poly-alpha-olefin (PAO)
- special anti-wear additives for loads C/P < 8, indicated by "P" in the DIN designation KP2K-30
- consistency to NLGI grade 2 in accordance with DIN 51818.

Initial greasing and operating life

Based on experience, the operating life is achieved when bearings are operated with grease lubrication in normal environmental conditions (C/P > 10), at room temperature and at v \leq 0,6 · v $_{max}$. If it is not possible to achieve these conditions, the bearings must be relubricated.

Sealed linear ball bearings are already adequately greased when delivered and are therefore maintenance-free in many applications.

Initial greasing and relubrication of bearings

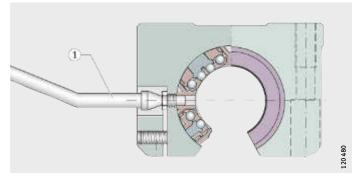
The initial greasing and relubrication of linear ball bearings without seals and relubrication holes must be carried out via the shaft. It must be ensured that all rolling elements come into contact with grease during recirculation. The bearing must be moved over at least twice its length during relubrication.

During initial greasing, the bearing fitted on the shaft should be fed with lubricant until this begins to emerge from the bearing.

In the case of the linear ball bearings KH, KN..-B-PP-AS, KS..-PP-AS and PAB..-PP-AS, relubrication can be carried out via holes or openings in the retaining ring or outer ring.

Relubrication interval

The relubrication interval is dependent on many operating conditions such as load, temperature, speed, stroke length, lubricant, environmental conditions and the mounting position.


Precise lubrication intervals should be determined by tests conducted under application conditions.

Relubrication of linear ball bearings in housings

If linear ball bearings are mounted in a housing, special nozzle tubes may be required for relubrication, *Figure 1* and *Figure 2*. Sources for nozzle tubes with suitable needle point heads can be requested from us.

Figure 1 Nozzle tube

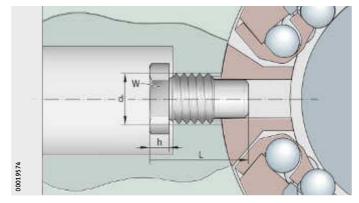
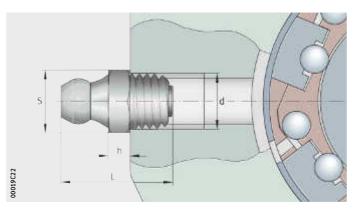

1) Nozzle tube

Figure 2 Relubrication using nozzle tube

Lubrication

Lubrication nipples for housings

Lubrication nipples for housings with KS are shown in *Figure 3*, suitable DIN lubrication nipples for housings with KN..-B are shown in *Figure 4* and *Figure 5*, page 31, for other housings, see *Figure 6*, page 31. The dimensions are given in the tables.



NIP..MZ

Figure 3 Lubrication nipple for heavy duty range KS

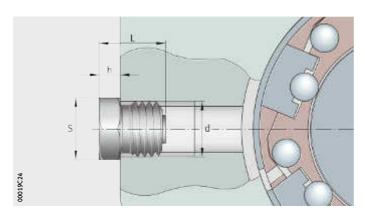
Lubrication nipples

Lubrication nipple	Width across flats	Dimensions		
	W	d mm	L mm	h mm
NIP4MZ	5	M4	7,7	1,5
NIP5MZ	6	M5	11,1	2
NIP6MZ	7	M6	14,8	2,5

NIP DIN 71412

Figure 4 Lubrication nipple DIN 71412 type A for light range KN..-B

Taper type lubrication nipples


Taper type lubrication nipple	Dimensions			
	S h13 mm	d mm	L	h j16 mm
NIP DIN 71412-AM6	7	M6	16	3
NIP DIN 71412-AM8×1	9	M8×1	16	3

NIP DIN 3405

Figure 5 Alternative lubrication nipple DIN 3405 type A for light range KN..-B

Funnel type lubrication nipples

Funnel type lubrication nipple	Dimensions			
	S h13 mm	d mm	L	h j16 mm
NIP DIN 3405-AM6	7	M6	9,5	3
NIP DIN 3405-AM8×1	9	M8×1	9,5	3

D d

NIPA

Figure 6
Lubrication nipple
for compact range KH,
machined range KB,
plain bearing range PAB

Lubrication nipples

Lubrication nipple	Dimensions			
	D mm	d mm	L mm	h mm
NIPA1	6	4	6	1,5
NIPA2	8	6	9	2

Lubrication

Application in special environments

In vacuum applications, lubricants with low vapourisation rates are required in order to maintain the vacuum atmosphere.

In the foodstuffs sector and clean rooms, special requirements are also placed on lubricants in relation to emissions and compatibility. For such environmental conditions, please consult us.

Oil lubrication

Oil lubrication should be used in preference if heat is to be dissipated and contaminants are to be carried out of the bearing by the lubricant.

This advantage should be set against the increased design work required (lubricant feed, sealing).

Suitable oils

As a function of the load case, we recommend the following oils:

- for low to moderate loads (C/P > 15):
 - hydraulic oils HL to DIN 51524 and oils CL to DIN 51517 in the viscosity range ISO-VG 10 to ISO-VG 22
- for high loads (C/P < 8):
 - hydraulic oils HLP to DIN 51524 and oils CLP to DIN 51517 in the viscosity range ISO-VG 68 to ISO-VG 100.

32 | **WF 1** Schaeffler Technologies

The good running characteristics of shaft guidance systems are dependent not only on the bearings. The geometrical and positional tolerances of the adjacent construction also play a significant role.

The higher the accuracy to which the adjacent construction is produced and assembled, the better the running characteristics.

Location

Linear ball bearings KH

Linear ball bearings KH and KH..-PP are pressed into the housing bore. This provides axial and radial location. No additional means of location are required.

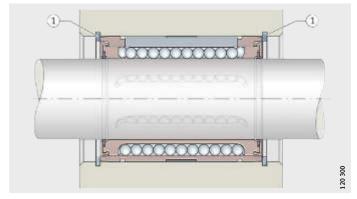
Linear ball bearings KN..-B, KB, KS and plain bearings PAB

Linear ball bearings KN..-B, KB, KS and plain bearings PAB require axial location.


Linear ball bearings KB and plain bearings PAB can be located by means of retaining rings or by the adjacent construction, *Figure 1* to *Figure 3*, page 34.

Linear ball bearings KN..-B and KS can be located in accordance with *Figure 2* and *Figure 3*, page 34.

Linear ball bearings KN..-B can also be located by means of a screw, *Figure 4*, page 34.


İ

The series KN..-B and KS should not be located by means of shaft retaining rings according to *Figure 1*. This could impair the function of the bearing.

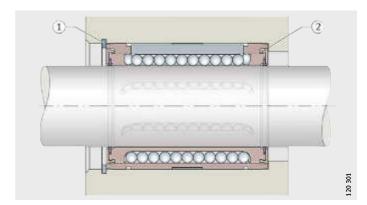
(1) Retaining rings

Figure 1
Retaining rings in the bearing slots

1 Retaining rings

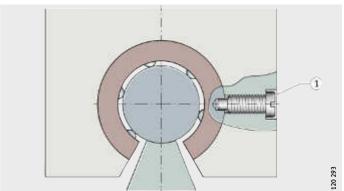
Figure 2
Retaining rings in the housing bore

Design of bearing arrangements


Linear ball bearings KNO..-B, KBO and plain bearings PABO

Linear ball bearings KNO..-B, KBO and plain bearings PABO must be axially located.

These bearings are located by external means. A dog point screw should preferably be used for location, *Figure 4*. Grub screws are also suitable.

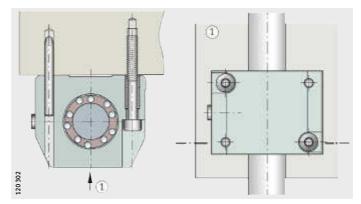


The locating screw must not be allowed to deform the bearing. The screw must be secured against loosening.

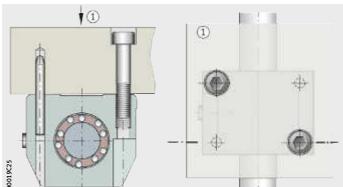
Retaining ring
 Housing rib

Figure 3 Retaining ring and housing rib

1) Dog point retaining screw


Figure 4 Location of the bearing using a screw

Linear ball bearing and housing units


Linear ball bearing and housing units and linear plain bearing units are screw mounted into or through the fixing holes, *Figure 5* and *Figure 6*.

Location of the units by means of dowels is only necessary in rare cases, but can be achieved easily by drilling out the centring holes.

1 Bottom view

Figure 5 Location of a unit from below

① Top view

Figure 6 Location of a unit from above

Design of bearing arrangements

Sealing

Clean raceways are necessary in order to prevent premature failure of the shaft and bearing. The bearing position should therefore always be sealed.

Gap seals or contact seals

The seals for the bearing series are shown in the table.

Gap seals protect the bearings against coarse contaminants. Contact seals give protection against fine contaminants and also retain the grease in the bearing.

Linear ball bearings and linear plain bearings with contact seals have the PP, example KH..-PP.

If the bearing and shaft are in a highly aggressive environment, it is recommended that the guidance system should be provided with additional protection by means of bellows or telescopic covers.

Seals for bearings and units

Series ¹⁾	Seal					
	Open design	Gap seals	Contact seals			
KH	•	_	•			
KNB, KNOB	_	•	•			
KS, KSO	-	•	•			
KB, KBO	_	•	•			
PAB, PABO	_	_	•			

Available design.

¹⁾ All linear bearing units have contact seals.

Operating clearance

Tolerance and operating clearance

The operating clearance of linear bearings is defined by the selection of shaft and housing tolerance, see tables, page 38.

The operating clearance of linear bearing units is defined either by the shaft or, in the case of slotted housings, is set by means of the adjustment screw.

In the case of non-rigid housings, tests must be carried out in order to achieve the required operating clearance by means of the housing and shaft tolerances.

For adjustment of the operating clearance see page 43.

Tolerance and operating clearance

Linear bearings,	Designation	Tolera	nce	Operating	
linear bearing and housing units		Shaft	Bore	clearance	
Compact range	KH	See ta	ble, pa	ge 38	
	KGHK, KTHK	h6	-	Standard	
Light range	KNB, KNOB	h6	H7	Clearance-free	
Heavy duty range	KS, KSO	h6	H7	Clearance-free	
	KGSNG, KTSG, KGSNO, KTSO, KGSC, KTFS	h6	-	Slight preload	
	KGSNS, KTSS, KGSNOS, KTSOS, KGSCS	-	_	Adjustable by means of screw	
Machined range	KB	See ta	ble, pa	ge 38	
	KBS, KBO				
	KGB, KGBA, KTB, KGBO, KTBO	h6	-	See table, page 38	
	KGBS, KGBAS, KGBAO	_	_	Adjustable by means of screw	
Plain bearing range	PAB, PABO	h7	H7	Standard	
	PAGBA, PAGBAO	h7	_	Standard	

Operating clearance

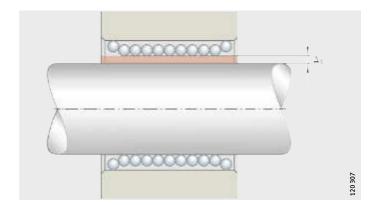
Mounting tolerances and operating clearance

The theoretically possible operating clearance for the individual series is shown in the following tables and *Figure 1*.

Operating clearance for KH, KN..-B, KNO..-B

Mounting tolerance		Operating clearance All sizes	
Shaft	Bore		
h6	H7, K7	Normal operating clearance	Steel/ aluminium
j5	H6, K6	Operating clearance smaller than normal	Steel/ aluminium

Operating clearance for KS, KSO


Mounti toleran	•	Size and operating clearance						
Shaft	Bore	12 μm	16 μm	20 μm	25 μm	30 μm	40 μm	50 μm
h6	H6	+36 -8	+34 -10	+37 -12	+34 -15	+29 -20	+33 -22	+30 -25
h6	H7	+44 -8	+42 -10	+46 -12	+43 -15	+38 -20	+44 -22	+41 -25
h6	JS6	+29 -14,5	+27,5 -16,5	+29 -20	+26 -23	+21 -28	+23,5 -31,5	+20,5 -34,5

Operating clearance for KB

Mounting Size and operating clearance tolerance								
Shaft	Bore	12	16	20	25	30	40	50
		μm	μm	μm	μm	μm	μm	μm
h6	H6 (H7)	+19 0	+20 -1	+22 -1	+24 -1	+24 -1	+29 -2	+29 -2

Operating clearance for KBS, KBO

Mounti toleran	-	Size and operating clearance						
Shaft	Bore	12 μm						50 μm
h6	Н6	+50 0	+51 -1	+60 -1	+62 -1	+62 -1	+74 -2	+74 -2
h6	H7	+58 0	+59 -1	+69 -1	+71 -1	+71 -1	+85 -2	+85 -2
h6	JS6	+43,5 -6,5	+44,5 -7,5	+52 -9	+54 -9	+54 -9	+64,5 -11,5	+64,5 -11,5

 $\Delta_{\rm S}$ = operating clearance

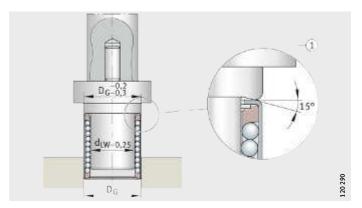
Figure 1 Operating clearance

Mounting

The bearings should only be removed from their packaging immediately before mounting. Bearings with dry preservative should be protected against corrosion immediately after removal from the packaging.

The mounting area and the adjacent construction must be clean. Contamination impairs the accuracy and operating life of the guidance systems.

The bearings must not be tilted.


In the case of sealed bearings with a segment cutout, it must be ensured at all costs that the ends of the seal lips are not turned inside out (pay attention to the packing slip).

Mounting of bearings Linear ball bearings KH

Linear ball bearings KH are pressed into the housing bore using a pressing mandrel, *Figure 1*. The mandrel dimensions must be in accordance with *Figure 1*.

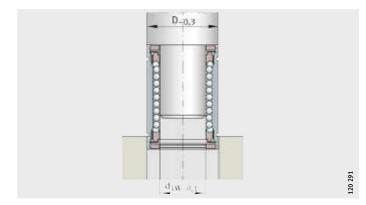
The marked end face of the linear ball bearing should be in contact with the flange of the mandrel.

Linear ball bearings can be mounted more easily if the outside surface is greased.

 d_{LW} = shaft diameter D_G = housing bore

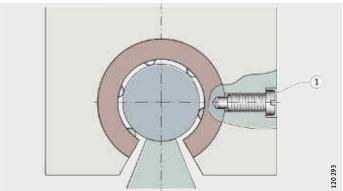
 ${\scriptsize \textcircled{1}} \ \mathsf{Detail}$

Figure 1
Pressing in of linear ball bearings KH


Mounting

Linear ball bearings KN..-B,KNO..-B, KB, KBS, KBO, KS, KSO and linear plain bearings PAB, PABO Smaller bearings of these series can be slid into the housing bore by hand. For larger bearings, it is advisable to use a mounting mandrel, Figure 2.

The bearings are then located by means of retaining rings or a screw, Figure 3.



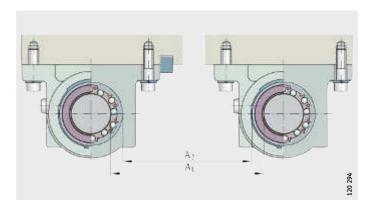
In the case of all bearings located by means of a screw, it must be ensured that the screw does not deform the bearing and the screw is secured against loosening.

d_{LW} = shaft diameter

Figure 2 Mounting of linear ball bearings using fitting mandrel

(1) Dog point retaining screw

Figure 3 Location of the bearing using a screw


Alignment of bearings and shafts Bearings arranged in series

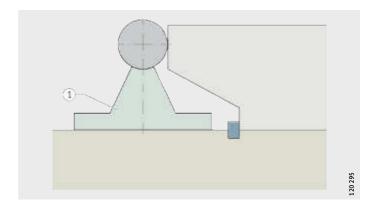
Bearings arranged in series should be aligned with a continuous shaft, positioned against a stop and then screw mounted firmly in place.

Bearings arranged in parallel

Bearings arranged in parallel are aligned by measuring the spacing between the shafts (A_1) or between the bearing outside diameters (A_2) , *Figure 4*. This spacing can also be defined by means of spacers.

The first shaft is set (datum shaft) and screw mounted. The second shaft is aligned by moving the table to achieve the required spacing.

 $\begin{array}{c} {\rm A_1 = spacing\ between} \\ {\rm the\ shafts} \\ {\rm A_2 = spacing\ between} \\ {\rm the\ bearing\ outside\ diameters} \end{array}$


Figure 4
Alignment
of bearings arranged in parallel

Mounting

Very long guidance systems with supported shaft

In very long guidance systems with supported shaft, one shaft and support rail unit is first aligned by means of the shaft and screw mounted firmly in place in stages (datum shaft), Figure 5.

The procedure described in section Bearings arranged in parallel is then carried out.

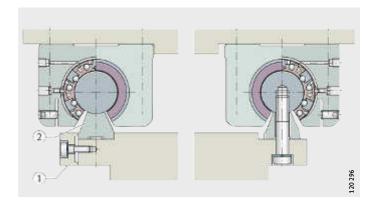

1) Shaft and support rail unit

Figure 5 Alignment of a shaft and support rail unit by means of the shaft

Guidance systems with clearance-free or preloaded bearings Only one row of bearings arranged in series should be set clearance-free or preloaded. The bearings parallel thereto should have a substantial operating clearance.

Parallel shaft and support rail units

Clamp the datum support rail against a stop, Figure 6.

1) Stop 2 Datum support rail

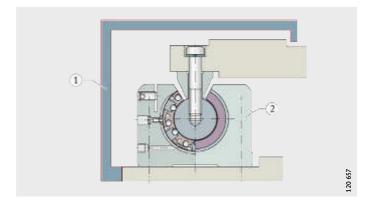
Figure 6 Clamping of the support rail when using two shaft and support rail units TSUW

Setting the operating clearance Setting

bearings clearance-free

In the case of linear ball bearings KBS and slotted housings, the operating clearance can be adjusted. The screw must be adjusted until resistance to further rotation can be felt between the shaft and bearing.

The adjusted bearing should not be rotated any further on the shaft.


Setting the preload

Preloaded bearings are set clearance-free on a master shaft that is smaller than the actual shaft in the application by the amount of the preload dimension.

Suspended arrangement of guidance system

If the guidance system is in a suspended arrangement, a drop guard ① is recommended, *Figure 7*.

① Drop guard ② Mounting position 180°

Figure 7
Suspended shaft guidance system with drop guard

Compact range Light range Heavy duty range Machined range Plain bearing range

		Page
Matrix	Matrix for preselection of linear bearings and linear bearing units	46
Product overview	Linear bearings and linear bearing and housing units	48 48 48 49 50 51
Features	Linear bearings	52
	Linear bearing and housing units	53
	Sealing	54
	Lubrication	55
	Operating temperature	55
	Operating limits	55
	Suffixes	55
	Compact range	56
	Light range	58
	Heavy duty range	60
	Machined range	62
	Plain bearing range	64
Dimension tables	Compact range, linear ball bearings	67
	Compact range, linear ball bearing and housing units	68
	Light range, linear ball bearings	74
	Heavy duty range, linear ball bearings	76
	Heavy duty range, linear ball bearing and housing units	78
	Machined range, linear ball bearings	90
	Machined range, linear ball bearing and housing units	92
	Plain bearing range, linear plain bearings	100
	Plain bearing range, linear plain bearing and housing units	102

Matrix for preselection of linear bearings and linear bearing and housing units

	· .					
Linear bearings and	For sha	aft diam	eter d _{L\}	_V in mm		
linear bearing and housing units	06	08	10	12	14	16
Compact range						
KH, KHPP	•	•	•	•	•	•
KGHKPP-AS	•	•	•	•	•	•
KTHKPP-AS	_	_	_	•	_	•
KGHAPP	_	_	_	_	_	•
Light range		<u> </u>	<u> </u>			
KNB	_	_	_	•	_	•
KNB-PP KNOB KNOB-PP						
Heavy duty range						
KS, KSPP	-	_	-	•	-	•
KSO, KSOPP	-	-	-	•	-	•
KGSNGPP-AS	-	_	-	•	-	•
KGSNSPP-AS	-	_	_	•	_	•
KTSGPP-AS	-	_	-	•	-	•
KTSSPP-AS	-	_	-	•	-	•
KGSNOPP-AS	-	_	-	•	-	•
KGSNOSPP-AS	_	_	_	•	_	•
KTSOPP-AS	_	_	_	•	_	•
KTSOSPP-AS	_	-	-	•	-	•
KGSCPP-AS	-	-	-	•	-	•
KGSCSPP-AS	-	-	-	•	-	•
KTFSPP-AS	-	-	-	•	-	•
Machined range						
KB, KBS, KBO KBPP, KBSPP KBOPP KBPP-AS KBSPP-AS KBOPP-AS KGBPP-AS KGBSPP-AS KGBAPP-AS KGBAPP-AS KGBAPP-AS KGBAPP-AS KGBAOPP-AS KGBAOPP-AS KTBPP-AS KTBPP-AS	_	_	_			
Plain bearing range						
PABPP-AS PABOPP-AS PAGBAPP-AS PAGBAOPP-AS	-	_	-	•	-	•

Definition of symbols

+++ Very good

- ++ Good
- + Satisfactory
- Available for shaft diameter

Linear bearings KH, KN..-B, KNO..-B, KS, KSO with the suffix PP are sealed on both sides.

Linear bearings with the suffix PP-AS are sealed on both sides and can be relubricated.

					Design		Characteris	stics					
20	25	30	40	50	Closed	Segment cutout	Feature	Load carrying capacity	Precision	Self- alignment	Adjustable	Description, page	
•	•	•	•	•	KH	_	Low	+	+	_	_	53, 56	
•	•	•	•	•			section					ŕ	
•	•	•	•	•			height						
•	•	•	•	_									
•	•	•	•	•	KNB	KNOB	Robust design	+	+	up to ±30	all	53, 58	
		<u> </u>											
•	•	•	•	•	KS	KSO	High	++	++	up to ±40	all	53, 60	
			1		- 1.5	11.50	load			up to =40	uii	55,00	
•	•	•	•	•			capacity						
•	•	•	•	•									
•	•	•	•	•									
•	•	•	-	-									
•	•	•	_	-									
•	•	•	•	•									
•	•	•	•	•									
	<u> </u>		1		_								
•	•	•	_	-									
•	•	•	-	-									
•	•	•	•	•									
•	•	•	•	•	1								
•	•	•	_	-									
•	•	•	•	•	КВ	КВО	High	+	+++	_	KBS	53, 62	
					KD	KDO	precision	T	****		KDS	33, 02	
			•										
•	•	•	•	•	PAB	PABO	Plain	+++	++	_	_	53, 64	
							bearings					.,.,	

Product overview Linear bearings and linear bearing and housing units

Compact range

Linear ball bearings With and without seals

Features, see page 56

Closed units Bearings in single or tandem arrangement

KH, KH..-PP

KTHK..-B-PP-AS

Closed unit

KGHA..-PP

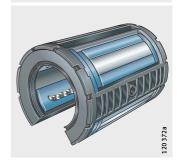
Light range

Linear ball bearings Closed or with segment cutout With and without seals

Features, see page 58

KNO..-B, KNO..-B-PP

Heavy duty range


Linear ball bearings Closed or with segment cutout With and without seals

Features, see page 60

KS, KS..-PP

KSO, KSO..-PP

Closed units Housing closed or slotted Bearings in single or tandem arrangement

KGSNG..-PP-AS, KGSNS..-PP-AS

KTSG..-PP-AS, KTSS..-PP-AS

Units with segment cutout Housing not slotted or slotted Bearings in single or tandem arrangement


KGSNO..-PP-AS, KGSNOS..-PP-AS

KTSO..-PP-AS,

KTSOS..-PP-AS



Bearings in single or tandem arrangement Housing not slotted or slotted Unit with centring collar

KGSC..-PP-AS, KGSCS..-PP-AS

KTFS

Product overview Linear bearings and linear bearing and housing units

Machined range

Linear ball bearings Closed or with slot With segment cutout With and without seals

Features, see page 62

KB, KB..-PP, KB..-PP-AS, KBS, KBS..-PP, KBS..-PP-AS

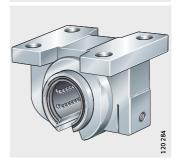
KBO, KBO..-PP, KBO..-PP-AS



Closed units Housing closed or slotted

KGB..-PP-AS, KGBS..-PP-AS

KGBA..-PP-AS, KGBAS..-PP-AS

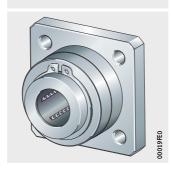


Units with segment cutout Housing not slotted or slotted

KGBO..-PP-AS

KGBAO..-PP-AS

Closed units or units with segment output Bearings in tandem arrangement


KTBO..-PP-AS

Closed unit Housing with flange

KFB..-B-PP-AS

Plain bearing range

Linear plain bearings Closed or with segment cutout Sealed

Features, see page 64

PAB..-PP-AS

136 268



Linear plain bearing and housing units Closed or with segment cutout

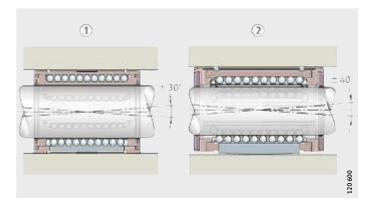
PAGBA..-PP-AS

PAGBAO..-PP-AS

Features

Linear bearings and linear bearing and housing units are available in the compact, light, heavy duty, machined and plain bearing range. The bearings can support high loads while having a relatively low mass and allow the construction of linear guidance systems with unlimited travel.

Each series has highly specific characteristics that precisely define it as suitable for particular applications. These may include, for example, requirements for compensation of misalignments, low-friction running, high accelerations and travel velocities or long operating life.


The range, which has been constructed and expanded in accordance with a modular concept, provides the best technical and economic solution, in relation to each application, for bearing arrangements with shaft guidance systems.

Linear bearings

Linear ball bearings and linear plain bearings are available in open or closed designs. The open design has a segment cut out and is intended for supported shafts. Several series allow, in conjunction with the corresponding housings, adjustment of the radial clearance in order to achieve clearance-free or preloaded guidance systems.

Compensation of misalignment

Misalignment can be caused by tolerance defects, mounting errors or inaccuracies in the adjacent construction. Linear ball bearings of the series KN..-B and KNO..-B can compensate static misalignment of up to $\pm 30'$, linear ball bearings of the series KS and KSO can compensate static misalignment of up to $\pm 40'$, Figure 1.

① KN..-B ② KS

Figure 1
Compensation of misalignment
by KN..-B and KS

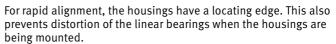
Due to the self-alignment function, the balls run without difficulty into the load zone. At the same time, the load distribution over the whole ball row is more uniform. This leads to smoother running, allows higher accelerations and prevents overloading of the individual balls.

Overall, this means that the bearings can achieve higher loads and a longer operating life; if necessary, the adjacent construction can be designed to be smaller and more economical.

In order to fully utilise the basic load ratings given in the dimension table, the shaft raceway must be hardened (670 HV + 165 HV) and ground. The indications in section Design of bearing arrangements must be observed, page 33.

Linear bearing and housing units

Linear ball bearings and plain bearings are also available in conjunction with INA housings as complete bearing units. The linear bearing is located in the housing by means of a radial fixing screw to prevent axial displacement.


The housings are made from a high rigidity, high strength aluminium alloy that allows the full load carrying capacity of the bearings fitted to be utilised. In the machined series, pressure diecast housings are also available.

Due to the comparatively low total mass, the units are particularly suitable for reduced mass designs with high loads and where higher accelerations and travel velocities are required.

Simple location

Threaded or counterbored holes in the housing allow straightforward screw mounting on the adjacent construction, if necessary from below.

Centring holes allow rapid additional location of the housings by dowels on the adjacent construction.

Housing designs The housings are available in closed design, with a segment

cutout and in open, slotted and tandem versions (with and without

a centring collar).

Closed design In this variant, the bearings and housings are closed.

As a result, high precision standard guidance systems with a fixed

enveloping circle can be easily achieved.

With segment cutout Open designs with a segment cutout are used where,

in the case of long guidance systems, the shaft must be supported

and the bearing arrangement must be highly rigid.

Slotted design Closed designs and designs with a segment cutout are also

available in several series with a slot. Slotted variants are suitable

for clearance-free or preloaded guidance systems.

The operating clearance is set by means of an adjusting screw.

Tandem design The tandem version contains two linear bearings.

As a result, the units have particularly high load carrying capacity. Tandem ball bearing and housing units are available in open and closed designs. Both variants are also available in the named design

with a slot.

With centring collar For special applications, there is also a tandem version

with a centring collar for locating bores to H7.

Highly cost-effective As a result of volume production in large quantities, the complete

units are normally considerably more economical than customers'

own designs.

Sealing The bearings are available in an open version and with contact seals

on both sides (suffix PP). The linear bearings of type KH, KN..-B and KB have seals with two seal lips on their end faces; the outer lip prevents the ingress of contamination, the inner lip retains the lubricant in the bearing. The linear bearings of type KS have contact seals

with one seal lip.

Lubrication

Due to the initial greasing with a high quality grease and the integral lubricant reservoir, the linear bearings are maintenance-free for many applications; if necessary, however, they can be relubricated.

Linear ball bearings can be lubricated, depending on the design, via the openings in the outer ring or radial holes arranged in the centre of the bearing.

In the units, lubrication is carried out via a separate lubrication nipple in the housing; location of the bearing in the housing and the relubrication devices are thus separate from each other.

Operating temperature

The bearings and housings can be used at operating temperatures from $-30\,^{\circ}\text{C}$ to $+80\,^{\circ}\text{C}$.

Operating limits

The table shows the operating limits for linear bearings.

Once the interrelationships of bearing size and design, load, operating clearance, location of bearings and lubrication have been checked, it may be possible in individual cases to use higher values. In this case, please contact us.

Linear bearing and housing units should be allocated in accordance with the linear bearing fitted.

Dynamic values for linear bearings

Acceleration,	Linear bearing series								
velocity	KH	KNB	KB	KS	PAB				
Acceleration in m/s ²	50	50	50	100	50				
Velocity in m/s	2	up to 5	up to 5	up to 5	up to 3				

In the case of linear ball bearings with seals, suffix PP, velocities up to 2 m/s are permissible.

Suffixes

Suffixes for available designs: see table.

Available designs

Suffix	Description	Design
PP	Lip seals on both sides	Standard
PPL	Sealing strips on bearings with segment cutout	Available by agreement
AS	Bearing and unit with relubrication facility	Standard

Compact range

Linear ball bearings KH and linear ball bearing and housing units of the compact range have a small radial design envelope and are particularly economical. Their low section height automatically makes them attractive for applications in which only a small amount of radial space is available.

Due to the closed design, they are suitable for use on shafts.

Linear ball bearings

The bearings have an outer ring with openings. This contains a ball and cage assembly with a plastic cage. The outer ring is formed and hardened. The balls undergo return travel along the openings in the outer ring.

Seals

The bearings are available in an open version and with lip seals on both sides (suffix PP). The end face seals have two seal lips; the outer lip prevents the ingress of contamination, the inner lip retains the lubricant in the bearing.

Linear ball bearing and

housing units

Linear ball bearing and housing units of the compact range are available with one integral bearing and, in the tandem version with particularly high load carrying capacity, with two bearings. The housings are made from high strength aluminium.

Anti-corrosion protection

The housings are two-piece components made from sheet steel with a Corrotect[®] coating. The bearings and housing parts are packed separately. The bearing is firmly seated once it is mounted in the housing.

Further information

Further information is given on the following pages:

- dimension tables, see page 67
- shafts, see page 104
- shaft and support rail units, see page 128
- accessories, see page 144.

56 | **WF 1** Schaeffler Technologies

Linear ball bearings and linear ball bearing and housing units, compact range

Series ¹⁾		Feature
КН		Linear ball bearings Not sealed
KHPP		Linear ball bearings Lip seals on both sides
KGHKPP-AS	0	Closed design Relubrication facility
KTHKPP-AS		Closed design Tandem design Relubrication facility
KGHAPP	Q	Unit Closed design

 $[\]overline{\text{Bearings}}$ with the suffix PP have lip seals on both sides.

Light range

The light range is available as linear ball bearings KN..-B of a closed design and as linear ball bearings KNO..-B with a segment cutout.

In order to compensate misalignments arising from manufacturing tolerances, mounting errors and shaft deflection, the linear bearings of series KN..-B are self-aligning up to $\pm 30'$.

Their robust construction allows operation even under aggressive operating conditions.

The series KN..-B is of a closed construction and is designed for use on shafts. KNO..-B has a segment cutout and is used with shaft and support rail units.

Linear ball bearings

Linear ball bearings KN..-B and KNO..-B comprise a plastic cage with inserted raceway plates. The plates are supported in the housing bore by means of a retaining ring. Due to the retaining ring, the plates can "rock" and thus compensate for static misalignments.

Seals

The bearings are available in an open version and with lip seals on both sides (suffix PP). The end face seals have two seal lips; the outer lip prevents the ingress of contamination, the inner lip retains the lubricant in the bearing.

Further information

Further information is given on the following pages:

- dimension tables, see page 74
- shafts, see page 104
- shaft and support rail units, see page 128
- accessories, see page 144.

Linear ball bearings, light range

Series ¹⁾	Feature
KNB KNB-PP	Linear ball bearings Closed design Self-aligning With or without lip seals
KNOB KNOB-PP	Linear ball bearings With segment cutout Self-aligning With or without lip seals

 $[\]overline{}^{(1)}$ Bearings with the suffix PP have lip seals on both sides.

Heavy duty range

Linear ball bearings of the heavy duty range KS and KSO and the corresponding ball bearing and housing units have particularly high load carrying capacity and have an angular adjustment facility for compensation of misalignments. They have very good running characteristics.

Linear ball bearings

Linear ball bearings KS and KSO comprise a plastic cage with loosely retained segments. The double row segments with crowned raceway plates can realign themselves in all directions and thus compensate misalignments. Since the complete segment undergoes realignment, there is no disruption to the recirculation of the balls. This results in uniformly low displacement resistance.

The series KS is of a closed construction and is designed for use on shafts. KSO has a segment cutout and is used in conjunction with shaft and support rail units.

Seals

The bearings are available with contact seals or gap seals. The contact seals on the end faces have two seal lips; the outer lip prevents the ingress of contamination, the inner lip retains the lubricant in the bearing.

Linear ball bearing and housing units

Linear ball bearing and housing units of the heavy duty range are available with one integral bearing and, in the tandem version with particularly high load carrying capacity, with two bearings.

The housings are made from high strength aluminium.

The housings are available in a closed design, with a segment cutout for supported shafts and with or without a slot. In designs with a slot, the radial clearance can be adjusted by means of an adjusting screw. All series have a locating edge and centring holes for dowel holes. The bearings are sealed on both sides, they have an initial greasing and can be relubricated via a lubrication nipple in the housing.

Further information

Further information is given on the following pages:

- dimension tables, see page 76
- shafts, see page 104
- shaft and support rail units, see page 128
- accessories, see page 144.

Linear ball bearings and linear ball bearing and housing units, heavy duty range

Series ¹⁾		Foaturo
		Feature
KS KSPP	Alex Tampone	Linear ball bearings
K3FF	311111111	Self-aligning
	SHIFTING	With or without lip seals
	AND RESIDENCE OF THE PARTY OF T	
KS0		Linear ball bearings
KSOPP	A CONTRACTOR OF THE PARTY OF TH	With segment cutout
		Self-aligning
	A A Distriction	With or without lip seals
KGSNGPP-AS		Closed design
	- Andrews	Relubrication facility
		,
	(2) JAN 1	
KGSNSPP-AS		Closed design
KUSINSI I -AS	Mary 19	Slotted housing
	- III	Relubrication facility
		Relublication facility
VTCC DD 4C		Charal Lari
KTSGPP-AS	The second	Closed design
		Tandem arrangement
	The state of the s	Relubrication facility
KTSSPP-AS	1 B	Closed design
	The same of the sa	Tandem arrangement
	The same of the sa	Slotted housing
		Relubrication facility
KGSNOPP-AS		With segment cutout
	9	Relubrication facility
		· ·
KGSNOSPP-AS		With segment cutout
	9 10 11	Slotted housing
		Relubrication facility
		notabilisation lability
KTSOPP-AS		With segment cutout
K150 11-A5	7 10	Tandem arrangement
	119	Relubrication facility
		Retubilication facility
KICOC DD AC		With compart sutsut
KTSOSPP-AS	8- 10- 10-	With segment cutout
	- 10 T	Tandem arrangement
		Slotted housing
		Relubrication facility
KGSCPP-AS		Open at side
	5) [Relubrication facility
KGSCSPP-AS	B ats	Open at side
	A STATE OF THE PARTY OF THE PAR	Slotted housing
	The state of the s	Relubrication facility
KTFSPP-AS	Party All	With centring collar
	Can -	Tandem arrangement
		Relubrication facility
	0	,

¹⁾ Bearings with the suffix PP have lip seals on both sides.

Machined range

Linear ball bearings of the machined range KB, KBS and KBO and the corresponding linear ball bearing and housing units are high precision and particularly rigid. They have excellent running characteristics.

Linear ball bearings

Linear ball bearings KB, KBS and KBO comprise a hardened and ground outer ring in which a ball and cage assembly with a plastic cage is integrated.

The balls are guided with high precision throughout the return area by a special spring washer. This ensures that the displacement resistance remains uniformly low even under difficult operating conditions and irrespective of the mounting position.

The series KB is of a closed construction and is designed for use on shafts. KBO has a segment cutout and is used in conjunction with shaft and support rail units. KBS has a slot for adjustment of the radial clearance.

Seals

The bearings have contact seals or gap seals.

Linear ball bearing and housing units

Linear ball bearing and housing units of the machined range are available with one integral bearing and, in the tandem version with particularly high load carrying capacity, with two bearings.

The housings are made from high strength aluminium or are pressure diecast.

The housings are available in a closed design, with a segment cutout for supported shafts and with or without a slot. In designs with a slot, the radial clearance can be adjusted by means of an adjusting screw.

All series have a locating edge and centring holes for dowel holes.

The bearings are sealed on both sides, they have an initial greasing

and can be relubricated via a lubrication nipple in the housing.

Further information

Further information is given on the following pages:

- dimension tables, see page 90
- shafts, see page 104
- shaft and support rail units, see page 128
- accessories, see page 144.

Linear ball bearings and linear ball bearing and housing units, machined range

KB KBPP-AS KBPP-AS KBSPP-AS KGBSPP-AS CLosed design Relubrication facility KGBSPP-AS KGBSPP-AS KGBSPP-AS CLosed design Relubrication facility KGBSPP-AS CLosed design Relubrication facility KTBPP-AS CLosed design Relubrication facility KTBOPP-AS CLosed design Relubrication facility	Series ¹⁾²⁾		Feature
KBPP KBPP-AS With or without lip seals depending on the design Relubrication facility KBS KBSPP KBSPP-AS With or without lip seals depending on the design Relubrication facility Slotted design Relubrication facility Slotted design Relubrication facility With or without lip seals depending on the design Relubrication facility With or without lip seals depending on the design Relubrication facility With segment cutout KGBPP-AS Closed design Relubrication facility KGBOPP-AS Closed design Relubrication facility KGBAPP-AS Closed design Relubrication facility KGBASPP-AS Closed design Slotted housing Relubrication facility KGBASPP-AS Closed design Slotted housing Relubrication facility KGBASPP-AS Closed design Slotted housing Relubrication facility KGBASPP-AS Closed design Tandem arrangement Relubrication facility KTBDPP-AS With segment cutout Tandem arrangement Relubrication facility KTBDPP-AS Closed design Tandem arrangement Relubrication facility KTBDPP-AS Closed design Tandem arrangement Relubrication facility			
KBSPP KBSPP KBSPP-AS With or without lip seals depending on the design Relubrication facility Slotted design KBO KBOPP-AS With or without lip seals depending on the design Relubrication facility With segment cutout KGBPP-AS Closed design Relubrication facility KGBSPP-AS Closed design Slotted housing Relubrication facility With segment cutout Relubrication facility KGBASPP-AS Closed design Relubrication facility KGBASPP-AS Closed design Relubrication facility KGBAOPP-AS Closed design Relubrication facility KGBAOPP-AS Closed design Slotted housing Relubrication facility KGBAOPP-AS Closed design Slotted housing Relubrication facility KGBAOPP-AS Closed design Tandem arrangement Relubrication facility KTBOPP-AS With segment cutout Tandem arrangement Relubrication facility KTBOPP-AS Closed design Tandem arrangement Relubrication facility	KBPP		With or without lip seals depending on the design
KBOPP KBOPP-AS With or without lip seals depending on the design Relubrication facility With segment cutout KGBPP-AS Closed design Relubrication facility RGBOPP-AS Closed design Relubrication facility With segment cutout Relubrication facility KGBAPP-AS Closed design Relubrication facility Closed design Relubrication facility KGBASPP-AS Closed design Relubrication facility KGBAOPP-AS Closed design Relubrication facility KGBAOPP-AS Closed design Relubrication facility KGBAOPP-AS Closed design Tandem arrangement Relubrication facility KTBPP-AS Closed design Tandem arrangement Relubrication facility	KBSPP		With or without lip seals depending on the design Relubrication facility
Relubrication facility KGBSPP-AS Closed design Slotted housing Relubrication facility With segment cutout Relubrication facility KGBAPP-AS Closed design Relubrication facility KGBASPP-AS Closed design Slotted housing Relubrication facility KGBAOPP-AS With segment cutout Relubrication facility KTBPP-AS Closed design Tandem arrangement Relubrication facility KTBOPP-AS With segment cutout Tandem arrangement Relubrication facility KTBOPP-AS Closed design Tandem arrangement Relubrication facility Closed design Tandem arrangement Relubrication facility	KBOPP		With or without lip seals depending on the design Relubrication facility
Solotted housing Relubrication facility KGBOPP-AS With segment cutout Relubrication facility KGBASPP-AS Closed design Relubrication facility Closed design Solotted housing Relubrication facility KGBAOPP-AS With segment cutout Relubrication facility KTBPP-AS Closed design Tandem arrangement Relubrication facility KTBOPP-AS With segment cutout Tandem arrangement Relubrication facility KTBOPP-AS Closed design Tandem arrangement Relubrication facility Closed design Tandem arrangement Relubrication facility	KGBPP-AS		=
KGBAPP-AS Closed design Relubrication facility Closed design Slotted housing Relubrication facility KGBAOPP-AS With segment cutout Relubrication facility KTBPP-AS Closed design Tandem arrangement Relubrication facility KTBOPP-AS With segment cutout Tandem arrangement Relubrication facility KTBOPP-AS Closed design Tandem arrangement Relubrication facility Closed design Tandem arrangement Relubrication facility	KGBSPP-AS		Slotted housing
KGBASPP-AS Closed design Slotted housing Relubrication facility With segment cutout Relubrication facility KTBPP-AS Closed design Tandem arrangement Relubrication facility With segment cutout Tandem arrangement Relubrication facility KTBOPP-AS Closed design Tandem arrangement Relubrication facility Closed design Closed design Closed design Closed design Closed design	KGBOPP-AS		_
KGBAOPP-AS With segment cutout Relubrication facility KTBPP-AS Closed design Tandem arrangement Relubrication facility KTBOPP-AS With segment cutout Tandem arrangement Relubrication facility KFBB-PP-AS Closed design Tandem arrangement Country Closed design Country Closed design Closed design	KGBAPP-AS		=
Relubrication facility KTBPP-AS Closed design Tandem arrangement Relubrication facility KTBOPP-AS With segment cutout Tandem arrangement Relubrication facility KFBB-PP-AS Closed design	KGBASPP-AS	O	Slotted housing
Tandem arrangement Relubrication facility With segment cutout Tandem arrangement Relubrication facility KFBB-PP-AS Closed design	KGBAOPP-AS		=
Tandem arrangement Relubrication facility KFBB-PP-AS Closed design	KTBPP-AS		Tandem arrangement
	KTBOPP-AS		Tandem arrangement
	KFBB-PP-AS		

Bearings with the suffix PP have lip seals on both sides.
 Bearings and units with the suffix AS can be relubricated.

Plain bearing range

Linear plain bearings PAB and PABO and the corresponding plain bearing and housing units have very high load carrying capacity, are extremely robust and have particularly low running noise. They have excellent emergency running characteristics.

Linear plain bearings

Linear plain bearings PAB and PABO comprise an outer ring made from high strength aluminium into which plain bearing bushes PAP..-P20 are fixed by adhesive.

The series PAB is of a closed construction and is designed for use on shafts. PABO has a segment cutout and is used in conjunction with shaft and support rail units.

Plain bushes must not be used in conjunction with the special coating Corrotect[®]. Crevice corrosion may occur that would impair the function of the bearing.

Further information

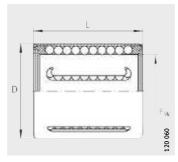
Further information is given on the following pages:

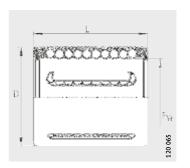
- dimension tables, see page 100
- shafts, see page 104
- shaft and support rail units, see page 128
- accessories, see page 144.

Linear plain bearings and linear plain bearing and housing units, plain bearing range

Series ¹⁾		Feature
PABPP-AS	OTT	Closed design Lip seals on both sides Relubrication facility
PABOPP-AS		With segment cutout Lip seals on both sides Relubrication facility
PAGBAPP-AS		Closed design Relubrication facility
PAGBAOPP-AS		With segment cutout Slotted housing Relubrication facility

 $^{^{1)} \ \}overline{\text{Bearings}}$ with the suffix PP have lip seals on both sides.





Compact range

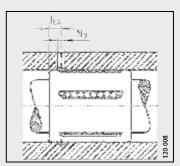
Linear ball bearings

Open or sealed Relubrication facility

KH..-PP

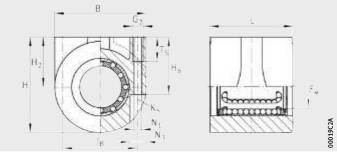

Sea.	X	100	-
			-

Dimension table ⋅ Dimensions in mm											
Designatio	gnation Mass Dimensions			Mounting dimensions		Basic load ratings ¹⁾					
2)	3)	m g	F _W	D	L	J_{L4}	N ₂	dyn. C _{min} N	stat. C _{O min} N	dyn. C _{max} N	stat. C _{0 max} N
KH06	KH06-PP	7	6	12	22	4	2	340	240	390	340
KH08	KH08-PP	12	8	15	24	6	2	410	280	475	400
KH10	KH10-PP	14,5	10	17	26	6	2,5	510	370	590	520
KH12	KH12-PP	18,5	12	19	28	6	2,5	670	510	800	740
KH14	KH14-PP	20,5	14	21	28	6	2,5	690	520	830	760
KH16	KH16-PP	27,5	16	24	30	7	2,5	890	620	1 060	910
KH20	KH20-PP	32,5	20	28	30	7	2,5	1110	790	1 170	1 010
KH25	KH25-PP	66	25	35	40	8	2,5	2 280	1 670	2 420	2 1 3 0
KH30	KH30-PP	95	30	40	50	8	2,5	3 300	2 700	3 300	3 100
KH40	KH40-PP	182	40	52	60	9	2,5	5 300	4 450	5 300	4 950
KH50	KH50-PP	252	50	62	70	9	2,5	6 800	6 300	6 800	7 000


Corrosion-resistant designs have the suffix -RROC.

This must be stated when ordering.

²⁾ With preservative.


Mounting dimensions

³⁾ With initial greasing, sealed on both sides.

Compact range

Linear ball bearing and housing units

Sealed Greased

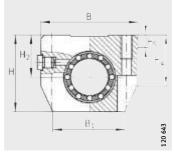
KGHA..-PP

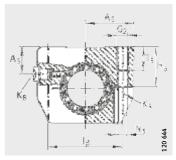
Dimension table ⋅ Dimensions in mm									
Designation	Mass	Dimensions							
	m	F _W	H ₂	Н	В	L			
	≈g		±0,015			+0,5			
KGHA16-PP	228	16	20	41	42	37			
KGHA20-PP	303	20	25	48,5	47	39			
KGHA25-PP	496	25	30	57,5	55	49			
KGHA30-PP	860	30	35	67,5	65	59			
KGHA40-PP	1 434	40	45	84	78	71			

 $^{^{1)}}$ The basic load ratings are only valid for hardened (670 HV + 165 HV) and ground shaft raceways.

²⁾ For fixing screws ISO 4762-8.8. If there is a possibility of settling, the screws should be secured against rotation.

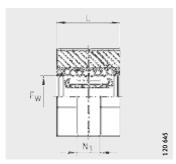
Mounting dimensions									Basic load ratings ¹⁾	
	H ₆	T ₅	J _B	G_2	N_1	N_3	K ₅ ²⁾	dyn. C	stat. C ₀	
			\pm 0,1					N	N	
	27	15	32	M6	5,1	8,1	M4	890	620	
	29	15	38	M6	5,1	8,1	M4	1110	790	
	35	15	46	M6	5,1	8,1	M4	2 280	1 670	
	39	20	54	M8	6,7	11,1	M6	3 3 0 0	2700	
	49	20	66	M8	6,7	11,1	M6	5 300	4 4 5 0	




Compact range

Linear ball bearing and housing units Sealed Greased,

with relubrication facility


KGHK..-B-PP-AS

Dimension table · Dimensions in mm									
Designation	Mass	Dimensions				Mounting dimensions			
	m	F _W	В	L	Н	J _B	B ₁	A ₅	
	≈g					±0,15			
KGHK06-B-PP-AS	40	6	32	22,2	27	23	25	16	
KGHK08-B-PP-AS	50	8	32	24,2	27	23	25	16	
KGHK10-B-PP-AS	70	10	40	26,2	33	29	32	20	
KGHK12-B-PP-AS	80	12	40	28,2	33	29	32	20	
KGHK14-B-PP-AS	100	14	43	28,2	36,5	34	34	21,5	
KGHK16-B-PP-AS	110	16	43	30,2	36,5	34	34	21,5	
KGHK20-B-PP-AS	150	20	53	30,2	42,5	40	40	26,5	
KGHK25-B-PP-AS	270	25	60	40,2	52,5	48	44	30	
KGHK30-B-PP-AS	400	30	67	50,2	60	53	49,6	33,5	
KGHK40-B-PP-AS	750	40	87	60,2	73,5	69	63	43,5	
KGHK50-B-PP-AS	1 250	50	103	70,2	92	82	74	51,5	

 $^{^{1)}}$ The basic load ratings are only valid for hardened (670 HV + 165 HV) and ground shaft raceways.

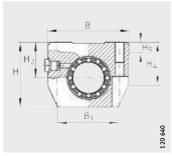
²⁾ For fixing screws ISO 4762-8.8. If there is a possibility of settling, the screws should be secured against rotation.

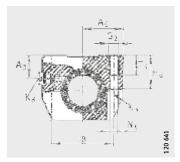
³⁾ Lubrication nipple, see page 31.

KGHK..-B-PP-AS

		100
4	 	edit.
-		-

											Basic load	l ratings ^{1]}
H ₂ +0,010 -0,014	H ₄	H ₅	T ₅	H ₆	A ₃	G ₂	N ₁	N ₃	K ₅ ²⁾	K ₈ ³⁾	dyn. C N	stat. C ₀ N
13	20,6	5	9	13	9	M4	3,4	7	M3	NIPA1	340	240
14	20,6	5	9	13	9	M4	3,4	7	M3	NIPA1	410	280
16	25,1	5	11	16	11	M5	4,3	10	M4	NIPA1	510	370
17	25,1	5	11	16	11	M5	4,3	10	M4	NIPA1	670	510
18	28,1	6,9	11	18	13	M5	4,3	10	M4	NIPA1	690	520
19	28,1	6,9	11	18	13	M5	4,3	10	M4	NIPA1	890	620
23	29,8	7,4	13	22	15	M6	5,3	11	M5	NIPA2	1 1 1 1 0	790
27	36,6	9,9	18	26	17,5	M8	6,6	15	M6	NIPA2	2 280	1 670
30	42,7	8	18	29	18	M8	6,6	15	M6	NIPA2	3 300	2 700
39	49,7	12,8	22	38	23	M10	8,4	18	M8	NIPA2	5 300	4 4 5 0
47	62,3	10,9	26	46	28	M12	10,5	20	M10	NIPA2	6 800	6300

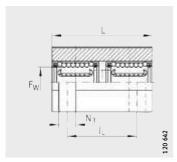



Compact range

Linear ball bearing and housing units

Tandem arrangement Sealed Greased, with relubrication facility

KTHK..-B-PP-AS


Dimension table · Dimensions in mm												
Designation	Mass	Dimension	าร			Mounting	dimensions	;				
	m	F _W	В	L	Н	J _B	B ₁	A ₅	J _L ²⁾			
	≈g					±0,15			±0,15			
KTHK12-B-PP-AS	170	12	40	60	33	29	32	20	35			
KTHK16-B-PP-AS	230	16	43	65	36,5	34	34	21,5	40			
KTHK20-B-PP-AS	320	20	53	65	42,5	40	40	26,5	45			
KTHK25-B-PP-AS	580	25	60	85	52,5	48	44	30	55			
KTHK30-B-PP-AS	850	30	67	105	60	53	49,6	33,5	70			
KTHK40-B-PP-AS	1 600	40	87	125	73,5	69	63	43,5	85			
KTHK50-B-PP-AS	2700	50	103	145	92	82	74	51,5	100			

¹⁾ The basic load ratings are only valid for hardened (670 HV + 165 HV) and ground shaft raceways and where the two linear ball bearings are subjected to equal loading.

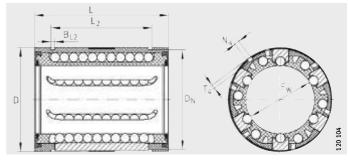
 $^{^{2)}\,}$ Dimension J_L and lubrication hole symmetrical to the bearing length L.

³⁾ For fixing screws ISO 4762-8.8. If there is a possibility of settling, the screws should be secured against rotation.

⁴⁾ Lubrication nipple, see page 31.

KTHK..-B-PP-AS

												Basic load	ratings ¹⁾
	H ₂	H ₄	H ₅	T ₅	H ₆	A ₃	G_2	N_1	N_3	K ₅ ³⁾	K ₈ ⁴⁾	dyn.	stat.
												C	C_0
	+0,010 -0,014											N	N
	17	25,1	5	11	16	11	M5	4,3	10	M4	NIPA1	1 090	1 020
	19	28,1	6,9	11	18	13	M5	4,3	10	M4	NIPA1	1 440	1 240
	23	29,8	7,4	13	22	15	M6	5,3	11	M5	NIPA2	1 800	1 580
	27	36,6	9,9	18	26	17,5	M8	6,6	11	M6	NIPA2	3 700	3 350
	30	42,7	8	18	29	18	M8	6,6	15	M6	NIPA2	5 400	5 400
	39	49,7	12,8	22	38	23	M10	8,4	18	M8	NIPA2	8 600	6 900
•	47	62,3	10,9	26	46	28	M12	10,5	20	M10	NIPA2	11 000	12600



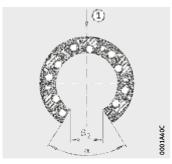
Light range

Linear ball bearings

Self-aligning Closed or with segment cutout Open or sealed Relubrication facility

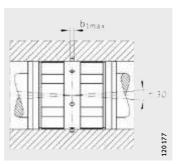
KN..-B-PP, KN..-B

Dimension tal	ole · Dimension	ns in mm							
Designation				Mass	Dimens	sions		Mountin	g dimensions
				m	F _W	D	L	B ₂ ²⁾	L ₂
				≈g					H13
KN12-B-PP	KN12-B	-	-	20	12	22	32	_	22,6
-	-	KNO12-B-PP	KNO12-B	20	12	22	32	6,5	-
KN16-B-PP	KN16-B	-	-	30	16	26	36	-	24,6
-	-	KNO16-B-PP	KNO16-B	20	716	26	36	9	-
KN20-B-PP	KN20-B	-	_	60	20	32	45	-	31,2
-	-	KNO20-B-PP	KNO20-B	50	720	32	45	9	-
KN25-B-PP	KN25-B	-	-	130	25	40	58	-	43,7
-	-	KNO25-B-PP	KNO25-B	110	723	40	50	11,5	-
KN30-B-PP	KN30-B	-	-	190	30	47	68	_	51,7
-	-	KNO30-B-PP	KNO30-B	160	730	47	00	14	-
KN40-B-PP	KN40-B	-	-	350	40	62	80	_	60,3
_	-	KNO40-B-PP	KNO40-B	300	40	62	80	19	-
KN50-B-PP	KN50-B	-	-	670	50	75	100	_	77,3
_	_	KNO50-B-PP	KNO50-B	570	50	/3	100	22,5	_


 $^{^{1)}}$ The basic load ratings are only valid for hardened (670 HV + 165 HV) and ground shaft raceways.

 $^{^{2)}}$ Dimension B₂ on diameter F_W.

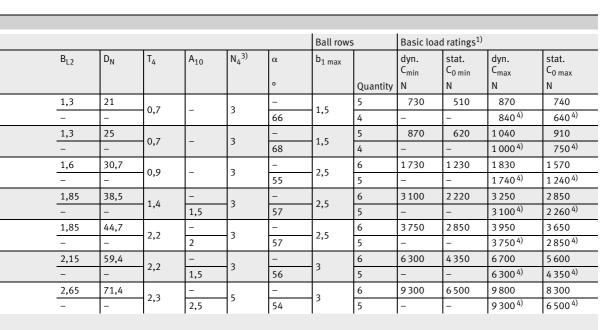
 $^{^{3)}}$ Hole position symmetrical to bearing length L.

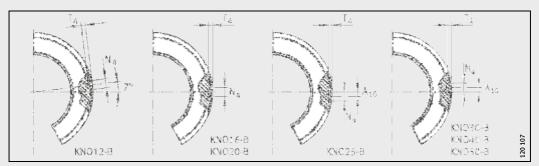

⁴⁾ Basic load rating in main load direction.

⁵⁾ ① Main load direction

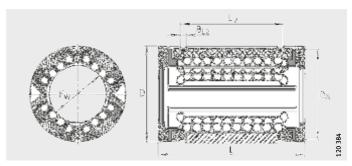
KNO..-B-PP, KNO..-B

① ⁵⁾


Self-aligning up to $\pm 30^{\prime}$

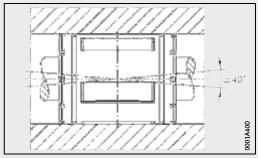


1	_	_	_	de
	2	di	~	Ħ
m	6	Œ	A	П
168	-8	5	۵A	D)



Fixing holes

Linear ball bearings


Self-aligning Closed or with segment cutout Open or sealed Relubrication facility

KS, KS..-PP

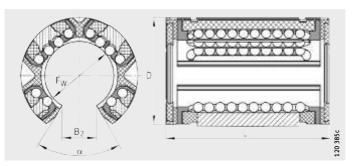
Dimensio	n table · Dimensi	ons in mm									
Designati	on			Mass	Dimen	sions		Mounti	ng dimens	sions	
3)	4)	3)	4)	m	F _W	D	L	B ₂ ⁵⁾	L ₂	B _{L2}	
				≈g					H13		
KS12	KS12-PP	-	-	18	12	22	32	-	22,6	1,3	
-	-	KS012	KSO12-PP	13	712	22	32	7,6	_	-	
KS16	KS16-PP	-	-	28	16	26	36	-	24,6	1,3	
-	-	KS016	KSO16-PP	19	16	26	36	10,1	-	-	
KS20	KS20-PP	-	-	51	20	32	45	-	31,2	1,6	
-	-	KS020	KSO20-PP	38	720	32	45	10	-	-	
KS25	KS25-PP	-	-	102	25	40	58	-	43,7	1,85	
-	-	KS025	KSO25-PP	75	723	40	50	12,5	-	-	
KS30	KS30-PP	-	-	172	30	47	68	_	51,7	1,85	
-	-	KS030	KSO30-PP	135	30	47	00	14,3	-	-	
KS40	KS40-PP	-	-	335	40	62	80	_	60,3	2,15	
-	-	KSO40	KSO40-PP	259	40	62	80	18,2	-	-	
KS50	KS50-PP	-	-	589	50	75	100	_	77,3	2,65	
_	-	KSO50	KSO50-PP	454	30	/ 5	100	22,7	_	-	

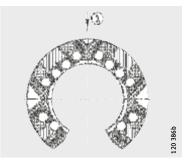
¹⁾ The basic load ratings are only valid for hardened (670 HV + 165 HV) and ground shaft raceways.

Self-aligning up to $\pm 40'$

 $^{^{2)}}$ Basic load rating in main load direction.

 $^{^{}m 3)}$ With preservative, gap seals on both sides.


⁴⁾ With initial greasing, contact seals on both sides.


⁵⁾ Dimension B₂ on diameter F_W.

⁶⁾ Hole position symmetrical to bearing length L.

⁷⁾ Only one lubrication and fixing hole each in size 16 and 20.

^{8) (1)} Main load direction

KSO, KSO..-PP

1,5

2,5

_

71,4

3,5

4,5

3

5

54

54

KSO, KSO..-PP

10 200²⁾

15 100

15 100²⁾

9 600²⁾

13 900

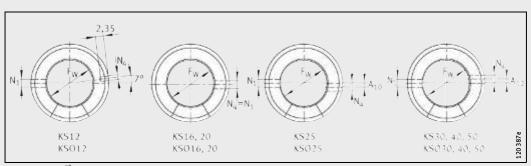
13 900²⁾

						Ball rows	Basic load rat	ings ¹⁾		
	D _N	A ₁₀	N ₁ ⁶⁾	N ₄ ⁶⁾	α		dyn. C _{min}	stat. C _{0 min}	dyn. C _{max}	stat. C _{0 max}
					0	Quantity	N	N	N	N
	21		-	3	_	8	630	600	900	1 100
	_]_	3)	78	6	-	_	900 ²⁾	1 100 ²⁾
	25		3 ⁷⁾	3 ⁷⁾	_	8	1 060	950	1 430	1 550
	_]	5.7	3.7	78	6	_	_	1 430 ²⁾	1 550 ²⁾
	30,7		3 ⁷⁾	3 ⁷⁾	-	8	1 780	1 600	2 200	2 310
	_	_	3''	3''	60	6	_	_	2 200 ²⁾	2 310 ²⁾
	38	1 5	2 5	3	-	8	2 700	2 430	3 950	4 300
	_	1,5	3,5)	60	6	_	_	3 950 ²⁾	4 300 ²⁾
•	44,7	2	2 5	3	_	8	4 650	3 970	5 900	6 000
	_] _	3,5)	57	6	_	_	5 900 ²⁾	6 000 ²⁾
	59,4	1.5	3.5	3	-	8	8 800	7 200	10 200	9 600

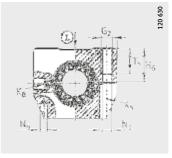
6

8

6


12300

9 700


Fixing holes⁷⁾

Linear ball bearing and housing units

Closed or with slot Sealed Greased, with relubrication facility

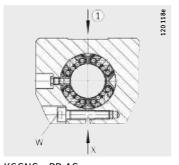
KGSNG..-PP-AS, KGSNS..-PP-AS

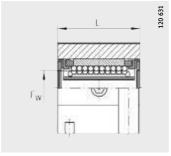
KGSNG..-PP-AS, KGSNS..-PP-AS \bigcirc $^{7)}$

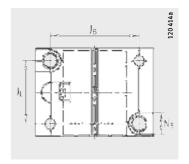
$\textbf{Dimension table} \cdot Dim$	Dimension table · Dimensions in mm												
Designation		Mass	Dimens	ions			Mounting dimensions						
			_	В	I.	Н		I n	۱,	1 3)			
		m	F _W	В	L	н	J _B	B ₁	A ₅	J _L ³⁾			
		≈g					±0,15		±0,01	±0,15			
KGSNG12-PP-AS	-	110	12	43	32	35	32	34	21,5	23			
_	KGSNS12-PP-AS	100	12	45	32))	32	54	21,5	23			
KGSNG16-PP-AS	-	220	16	53	37	42	40	40	26,5	26			
-	KGSNS16-PP-AS	200	-0	33	٥,	42	40	40	20,5	20			
KGSNG20-PP-AS	-	370	20	60	45	50	45	44	30	32			
_	KGSNS20-PP-AS	360	20	00	73	30	73	77	30	32			
KGSNG25-PP-AS	-	630	25	78	58	60	60	59,4	39	40			
-	KGSNS25-PP-AS	550	23	70	30	00	00	32,4	37	40			
KGSNG30-PP-AS	-	890	30	87	68	70	68	63	43,5	45			
_	KGSNS30-PP-AS	730	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		- 00	, ,	00	0,5	73,3	73			
KGSNG40-PP-AS	-	1 300	40	108	80	90	86	76	54	58			
-	KGSNS40-PP-AS	1 350							- '	-			
KGSNG50-PP-AS	-	2 200	50	132	100	105	108	90	66	50			
-	KGSNS50-PP-AS	2 250				100	100	~					

¹⁾ The basic load ratings are only valid for hardened (670 HV + 165 HV) and ground shaft raceways.

²⁾ Basic load rating in main load direction.


 $^{^{3)}}$ Dimension J_L and lubrication hole symmetrical to the bearing length L.


⁴⁾ Centring for dowel hole.


⁵⁾ For fixing screws ISO 4762-8.8. If there is a possibility of settling, the screws should be secured against rotation.

⁶⁾ Lubrication nipple. Designs and dimensions, see page 30.

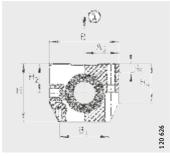
⁷⁾ ① Main load direction

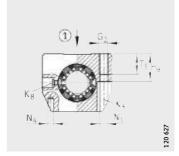
KGSNS..-PP-AS

KGSNG..-PP-AS,KGSNS..-PP-AS

KGSNS..-PP-AS

2	990	m	999	671
	uuu	ш	ш	-1
15	-			21
150	-	-	100	23


												Ball rows	Basic loa ratings ^{1) 2}	d 2)
+0,008 -0,016	H ₅	H ₄	T ₅	H ₆	G_2	N_1	N ₄ ⁴⁾	N ₃	K ₅ ⁵⁾	K ₈ ^{3) 6)}	Width across flats W	Quantity		stat. C _{0 max}
18	5,4	26,6	11	16,5	M5	4,3	4	8	M4	NIP4MZ	- 2,5	8	900	1 100
22	6,9	29,3	13	21	M6	5,3	4	10	M5	NIP4MZ	3	8	1 430	1 5 5 0
25	7,4	34,1	18	24	M8	6,6	5	11	M6	NIP4MZ	4	8	2 200	2 3 1 0
30	8,3	41,5	22	29	M10	8,4	6	15	M8	NIP5MZ	- 5	8	3 950	4 300
35	9,3	46,2	22	34	M10	8,4	6	15	M8	NIP5MZ	- 5	8	5 900	6 0 0 0
45	11,7	57,6	26	44	M12	10,5	8	18	M10	NIP5MZ	- 6	8	10 200	9 600
50	10,6	62	35	49	M16	13,5	10	20	M12	NIP6MZ	8	8	15 100	13 900



Linear ball bearing and housing units

Tandem arrangement Closed or with slot Sealed Greased, with relubrication facility

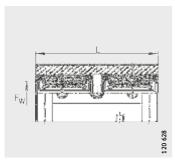
KTSG..-PP-AS, KTSS..-PP-AS

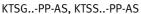
KTSG..-PP-AS, KTSS..-PP-AS

Dimension table · Dimensions in mm											
Designation		Mass	Dimens	ions			Mounting dimensions				
		m	F _W	В	L	Н	J _B	B ₁	A ₅	J _L ³⁾	L ₆ ³⁾
		~a					±0,15		±0,01	±0,15	
	1	≈g					-0,15		±0,01	-0,13	
KTSG12-PP-AS	-	210	12	43	70	35	32	34	21,5	56	24
-	KTSS12-PP-AS	210		7,5	, ,	,,,	32	J-1	21,5	50	2-7
KTSG16-PP-AS	-	380	16	53	78	42	40	40	26,5	64	26
-	KTSS16-PP-AS	300	16	55	/ 0	42	40	40	20,5	64	20
KTSG20-PP-AS	-	550	20	60	96	50	45	44	30	76	33
_	KTSS20-PP-AS	550	20	60	96	50	45	44	30	76	33
KTSG25-PP-AS	-	1130	25	78	122	60	60	59,4	39	94	44
-	KTSS25-PP-AS	1130	25	70	122	80	80	59,4	39	94	44
KTSG30-PP-AS	-	1780	30	87	142	70	68	63	43,5	106	54
-	KTSS30-PP-AS	1/80	30	0/	142	/0	00	65	40,5	100	J4

¹⁾ The basic load ratings are only valid for hardened (670 HV + 165 HV) and ground shaft raceways.

²⁾ Basic load rating in main load direction.


 $^{^{\}rm 3)}$ Dimensions $\rm J_L, \, L_6$ and lubrication hole symmetrical to the bearing length L.


⁴⁾ Centring for dowel hole.

⁵⁾ For fixing screws ISO 4762-8.8. If there is a possibility of settling, the screws should be secured against rotation.

⁶⁾ Lubrication nipple. Designs and dimensions, see page 30.

⁷⁾ ① Main load direction

 H_4

26,6

29,3

34,1

41,5

46,2

 H_6

16,5

21

24

29

34

 T_5

11

13

18

22

22

 H_2

+0,008 -0,016

18

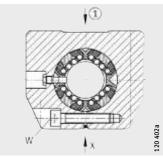
22

25

30

35

H₅


5,4

6,9

7,4

8,3

9,3

KTSS..-PP-AS

 N_1

4,3

5,3

6,6

8,4

8,4

 G_2

M5

M6

М8

M10

M10

 $N_4^{4)}$ N_3

4

5

6

6

8

10

11

15

15

K₅⁵⁾

Μ4

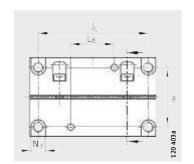
M5

M6

M8

M8

K₈³⁾⁶⁾


NIP4MZ

NIP4MZ

NIP4MZ

NIP5MZ

NIP5MZ

Basic load ratings^{1) 2)}

stat.

Ν

 $C_{0 max}$

2100

3 1 0 0

4 600

8 600

12000

dyn.

 C_{max}

1 460

2330

3 500

6 400

9 600

Ν

KTSS..-PP-AS

Width

across

flats W

2,5

3

4

5

5

Ball rows

Quantity

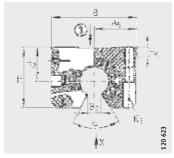
8

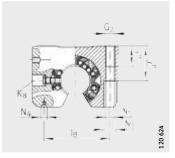
8

8

8

8





Linear ball bearing and housing units

With segment cutout With or without slot Sealed Greased, with relubrication facility

Starting KGSNO16-PP-AS, KGSNOS16-PP-AS \bigcirc $^{8)}$

Starting KGSNO16-PP-AS, KGSNOS16-PP-AS

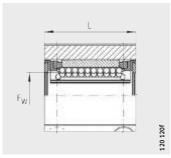
Dimension table · Di	mensions in mm									
Designation		Mass	Dimensi	ions			Mountir	ng dimens	sions	
		m	F _W	В	L	Н	J _B	A ₅	B ₂ ³⁾	J _L ⁴⁾
		≈g					±0,15	±0,01		±0,15
KGSNO12-PP-AS	-	80	12	43	32	28	32	21,5	7.6	23
-	KGSNOS12-PP-AS	90	12	43	32	20	32	21,5	7,6	23
KGSNO16-PP-AS	-	150	16	53	37	35	40	26,5	10,1	26
-	KGSNOS16-PP-AS	150	16))	37	22	40	26,5	10,1	20
KGSNO20-PP-AS	-	200	20	60	45	42	45	30	10	32
_	KGSNOS20-PP-AS	250	20	60	45	42	45	30	10	32
KGSNO25-PP-AS	-	410	25	78	58	51	60	39	12.5	40
-	KGSNOS25-PP-AS	520	25	/8	56	21	60	39	12,5	40
KGSNO30-PP-AS	-	600	30	87	68	(0	6 0	42 F	14.2	4.5
_	KGSNOS30-PP-AS	760	30	87	68	60	68	43,5	14,3	45
KGSNO40-PP-AS	-	1 100	40	108	80	77	86	F /	10.2	58
-	KGSNOS40-PP-AS	1 400	140	108	80	//	86	54	18,2	36
KGSNO50-PP-AS	-	2 870	F0	122	100	00	108		22.7	50
-	KGSNOS50-PP-AS	2 670	50	132	100	88	108	66	22,7	50
	•	•	•	•	•	•	•	•	•	•

 $^{^{1)}}$ The basic load ratings are only valid for hardened (670 HV + 165 HV) and ground shaft raceways.

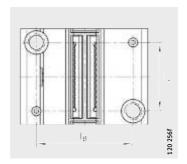
²⁾ Basic load rating in main load direction.

 $^{^{3)}}$ Dimension B_2 on diameter F_W .

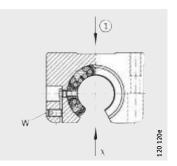
 $^{^{4)}}$ Dimension J_L and lubrication hole symmetrical to the bearing length L.


⁵⁾ Centring hole DIN 332 type A.

⁶⁾ For fixing screws ISO 4762-8.8.

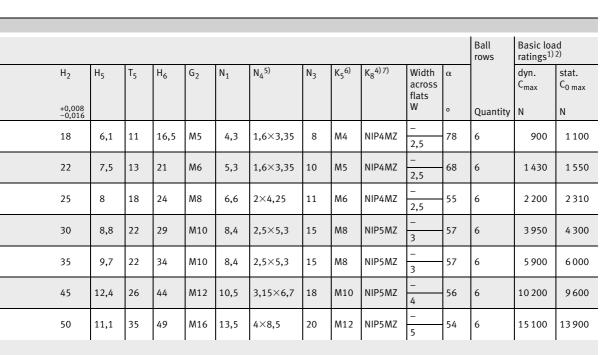

If there is a possibility of settling, the screws should be secured against rotation.

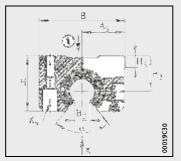
⁷⁾ Lubrication nipple. Designs and dimensions, see page 30.

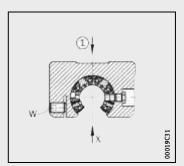

^{8) (1)} Main load direction

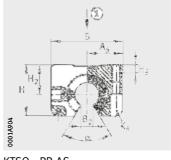
KGSNO..-PP-AS, KGSNOS..-PP-AS

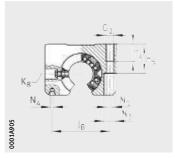
KGSNOS..-PP-AS View X


Starting KGSNOS16-PP-AS $(1)^{8}$



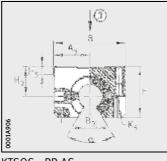


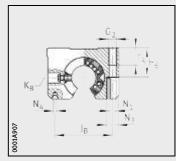

KGSNO12-PP-AS, KGSNOS12-PP-AS


KGSNOS12-PP-AS

Linear ball bearing and housing units

Tandem arrangement With segment cutout With or without slot Sealed Greased, with relubrication facility


KTSO..-PP-AS


KTSO..-PP-AS

$\textbf{Dimension table} \cdot D$	imensions in mm									
Designation		Mass	Dimens	ions			Mountir	ng dimens	sions	
		m	F _W	В	L	Н	J _B	A ₅	B ₂ ³⁾	J _L ⁴⁾
		≈g					±0,15	±0,01		±0,15
KTSO12-PP-AS	-	190	12	43	70	28	32	21.5	7.6	56
-	KTSOS12-PP-AS	190	12	43	70	28	32	21,5	7,6	50
KTSO16-PP-AS	-	320	16	53	78	35	40	26,5	10,1	64
-	KTSOS16-PP-AS	320	10	33	70))	40	20,5	10,1	04
KTSO20-PP-AS	_	520	20	60	96	42	45	30	10	76
-	KTSOS20-PP-AS	320	20	00	90	42	4)	50	10	70
KTSO25-PP-AS	-	1 060	25	78	122	51	60	39	12,5	94
-	KTSOS25-PP-AS	1000	25	76	122	31	00	39	12,5	74
KTSO30-PP-AS	-	1 550	30	87	142	60	68	43,5	14,3	106
-	KTSOS30-PP-AS	1)) (70	07	142	00	00	40,0	14,5	100

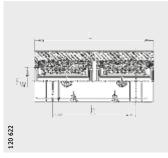
¹⁾ The basic load ratings are only valid for hardened (670 HV + 165 HV) and ground shaft raceways.

KTSOS..-PP-AS

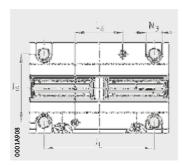
KTSOS..-PP-AS

²⁾ Basic load rating in main load direction.

³⁾ Dimension B₂ on diameter F_W.


 $^{^{\}rm 4)}$ Dimensions $\rm J_L, \, L_6$ and lubrication hole symmetrical to the bearing length L.

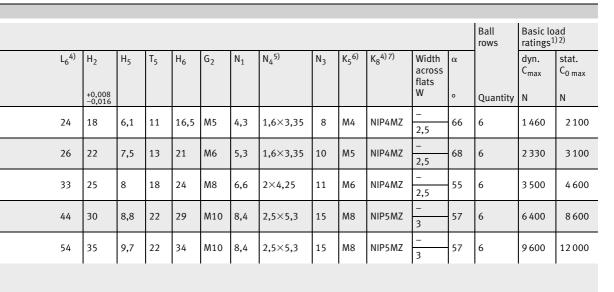
⁵⁾ Centring hole DIN 332 type A.

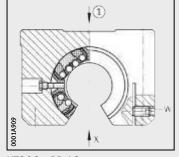

⁶⁾ For fixing screws ISO 4762-8.8. If there is a possibility of settling, the screws should be secured against rotation.

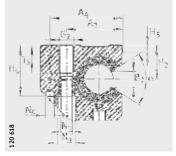
⁷⁾ Lubrication nipple. Designs and dimensions, see page 30.

^{8) (1)} Main load direction

KTSO..-PP-AS, KTSOS..-PP-AS


KTSO..-PP-AS View X




KTSOS..-PP-AS

Linear ball bearing and housing units

Lateral segment cutout With or without slot Sealed Greased, with relubrication facility

KGSC..-PP-AS, KGSCS..-PP-AS

KGSC..-PP-AS, KGSCS..-PP-AS

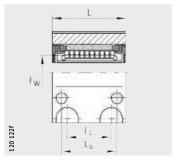
$\textbf{Dimension table} \cdot \\$	Dimensions in mm											
Designation		Mass	Dimer	sions			Mounti	ng dime	nsions			
		m	F _W	В	L	Н	A ₂	A ₄	A ₅	B ₂ ³⁾	J _L ⁴⁾	L ₆ ⁴⁾
		≈g					±0,15		±0,01		±0,15	
KGSC20-PP-AS	-	350	20	60	47	60	39	51	17	10	30	36
_	KGSCS20-PP-AS	330	20	00	47	00	39	71	17	10	50	50
KGSC25-PP-AS	-	680	25	75	58	72	49	64	21	12,5	36	45
-	KGSCS25-PP-AS	000	23	73	50	72	47	04	21	12,5	50	43
KGSC30-PP-AS	-	1 000	30	86	68	82	59	76	25	14,3	42	52
-	KGSCS30-PP-AS	1000	50	80	00	02	39	70	23	14,5	42	32
KGSC40-PP-AS	-	1 800	40	110	80	100	75	97	32	18,2	48	60
-	KGSCS40-PP-AS	1 800	40	110	80	100	73	91	32	10,2	40	00
KGSC50-PP-AS	-	2 900	50	127	100	115	88	109	38	22,7	62	80
-	KGSCS50-PP-AS	2 900		12/	100	117	00	109)0	22,7	02	00

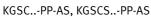
¹⁾ The basic load ratings are only valid for hardened (670 HV + 165 HV) and ground shaft raceways.

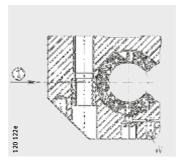
²⁾ Basic load rating in main load direction.

 $^{^{3)}}$ Dimension B_2 on diameter F_W .

 $^{^{\}rm 4)}$ Dimensions $\rm J_L, L_6$ and lubrication hole symmetrical to the bearing length L.


⁵⁾ Centring for dowel hole.

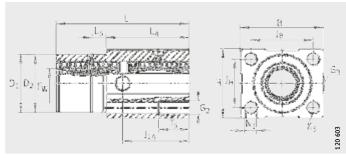

⁶⁾ For fixing screws ISO 4762-8.8.


If there is a possibility of settling, the screws should be secured against rotation.

⁷⁾ Lubrication nipple. Designs and dimensions, see page 30.

⁸⁾ ① Main load direction

KGSCS..-PP-AS


													Ball rows	Basic loa ratings ¹⁾	ıd 2)
+0,008 -0,016	H ₅	H ₄	T ₅	H ₆	G ₂	N ₁	N ₄ ⁵⁾	N ₃	K ₅ ⁶⁾	K ₈ ⁴⁾⁷⁾	Width across flats W	α ο	Quantity	dyn. C _{max}	stat. C _{0 max}
30	8,3	37,5	18	42,6	M10	8,4	6	15	M8	NIP4MZ	_	55	6	2 200	2 3 1 0
50	0,5	37,3	10	42,0	WITO	0,4	Ů	1)	IVIO	IVII 4IVIZ	2,5))	0	2 200	2 310
35	8,2	45	22	50,6	M12	10,5	8	18	M10	NIP5MZ	-	57	6	3 950	4 300
											3				
40	9	52	29	55,6	M16	13,5	10	20	M12	NIP5MZ	_	57	6	5 900	6 0 0 0
			-	,-		- ,-				_	3				
45	9,5	60	36	67,6	M20	15,5	12	24	M14	NIP5MZ	_	56	6	10 200	9 600
4)	9,5	00	50	07,0	14120	1,,,	12	24	11114	INIF JINIZ	4	50	O	10 200	9 000
F.O.	0.6	70	26	70.0	Mag	17.5	12	26	Mac	NUD/M7	_	F /		15 100	12.000
50	8,6	70	36	78,8	M20	17,5	12	26	M16	NIP6MZ	5	54	6	15 100	13 900

Linear ball bearing and housing units

Centring collar
Tandem arrangement
Sealed
Greased,
with relubrication facility

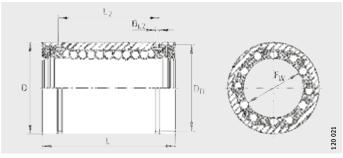
KTFS..-PP-AS

$\textbf{Dimension table} \cdot Dimen$	sions in mm							
Designation	Mass	Dimensions	5			Mounting d	imensions	
	m	F _W	В	L	Н	J_{B}	L ₄	L ₅
	≈g					±0,15		
KTFS12-PP-AS	180	12	42	70	34	32	46	10
KTFS16-PP-AS	260	16	50	78	40	38	50	10
KTFS20-PP-AS	550	20	60	96	50	45	60	10
KTFS25-PP-AS	700	25	74	122	60	56	73	10
KTFS30-PP-AS	1 100	30	84	142	70	64	82	10

 $^{^{1)}}$ The basic load ratings are only valid for hardened (670 HV + 165 HV) and ground shaft raceways.

²⁾ Recommended locating bore for $D_1 = H7$.

									Ball	Basic load	l ratings ¹⁾
	D ₁ ²⁾		J _H	T ₅	G ₂	N ₁	K ₅	G ₃	rows	dyn. C _{min}	stat. C _{0 min}
	g7	-0,1 -0,3	$\pm 0,15$						Quantity	N	N
35	30	30	24	13	M6	5,3	M5	M8×1	8	1 020	1 200
39	35	35	28	18	M8	6,6	M6	M8×1	8	1 790	1 900
48	42	42	35	22	M10	8,4	M8	M8×1	8	3 100	3 200
61	52	52	42	26	M12	10,5	M10	M8×1	8	4 400	4850
71	61	61	50	35	M16	13,5	M12	M8×1	8	7 550	7 900



Linear ball bearings

Closed, slotted or with segment cutout Open or sealed Not greased, greased, with relubrication facility

ΚB

Dimension	table · Dimensi	ons in mm								
Designatio	n		Mass	Dimen	sions			Mountin	ng dimen	sions
3)	4)	5)	m	F _w		D ⁶⁾	L	B ₂ ⁷⁾	L ₂	B _{L2} ⁸⁾
			≈g		Tolerances ⁶⁾	h5	h12		H13	
KB12	KB12-PP	KB12-PP-AS								
KBS12	KBS12-PP	KBS12-PP-AS	40	12	+0,008	22	32	_	22,6	1,3
KBO12	KBO12-PP	KBO12-PP-AS	30					7,7		
KB16	KB16-PP	KB16-PP-AS	50							
KBS16	KBS16-PP	KBS16-PP-AS	50	16	+0,009 -0,001	26	36	_	24,6	1,3
KB016	KBO16-PP	KBO16-PP-AS	40					10,1		
KB20	KB20-PP	KB20-PP-AS	90							
KBS20	KBS20-PP	KBS20-PP-AS			+0,009 -0,001	32	45		31,2	1,6
KBO20	KBO20-PP	KBO20-PP-AS	70					10		
KB25	KB25-PP	KB25-PP-AS	190							
KBS25	KBS25-PP	KBS25-PP-AS	190	25	+0,011 -0,001	40	58		43,7	1,85
KBO25	KBO25-PP	KBO25-PP-AS	150					12,5		
KB30	KB30-PP	KB30-PP-AS	300					1_		
KBS30	KBS30-PP	KBS30-PP-AS	300	30	+0,011 -0,001	47	68		51,7	1,85
KBO30	KBO30-PP	KBO30-PP-AS	240					13,6		
KB40	KB40-PP	KB40-PP-AS	600					_		
KBS40	KBS40-PP	KBS40-PP-AS	000	40	+0,013 -0,002	62	80		60,3	2,15
KBO40	KBO40-PP	KBO40-PP-AS	520				18,2			
KB50	KB50-PP	KB50-PP-AS	1000							
KBS50	KBS50-PP	KBS50-PP-AS	1000	50	+0,013 -0,002	75	100		77,3	2,65
KBO50	KBO50-PP	KBO50-PP-AS	850					22,7		

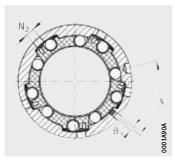
¹⁾ The basic load ratings are only valid for hardened (670 HV + 165 HV) and ground shaft raceways.

²⁾ Basic load rating in main load direction.

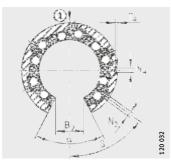
³⁾ With preservative.

⁴⁾ With initial greasing, sealed on both sides.

 $^{^{5)}}$ With initial greasing, sealed on both sides, with relubrication facility.

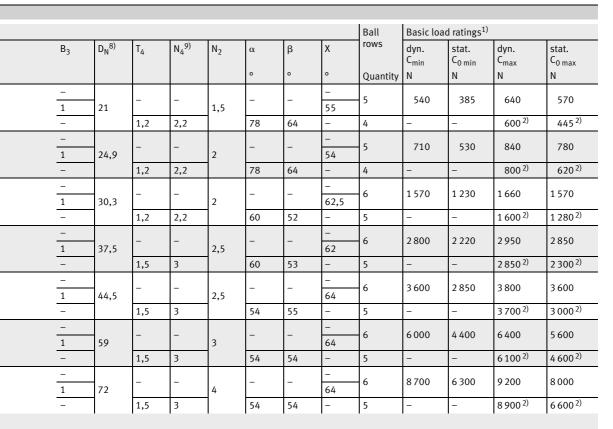

⁶⁾ The tolerances are only valid for KB.

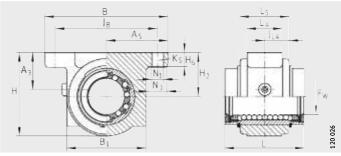
⁷⁾ Dimension B₂ on diameter F_W.


⁸⁾ Slot dimensions suitable for retaining rings to DIN 471.

⁹⁾ Hole position symmetrical to bearing length L.

 $^{^{10)}}$ ① Main load direction


KBO..-PP-AS



Linear ball bearing and housing units

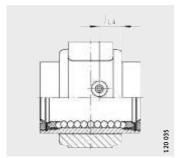
Closed, slotted or with segment cutout Sealed Greased, with relubrication facility

KGB..-PP-AS

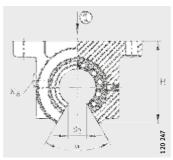
B: 1 (11	5											
Dimension table	e · Dimensions in	mm										
Designation			Mass	Dim	ensions				Mounting o	dimens	ions	
			m	F _W		В	L	Н	J_{B}	B ₁	A ₅	B ₂ ⁴⁾
			≈g		Toler- ances ⁶⁾		h12					
KGB12-PP-AS	-	-	100					35,8				_
-	KGBS12-PP-AS	-	100	12	+0,008 0	52	32	22,0	42 ±0,15	31,6	26±0,02	_
-	-	KGBO12-PP-AS	90					32				7,7
KGB16-PP-AS	-	-	140					37,5				
-	KGBS16-PP-AS	1	140	16	+0,009 -0,001	56	36	37,3	46 ±0,15	35	28±0,02	
-	1	KGBO16-PP-AS	120					33,5				10,1
KGB20-PP-AS	ı	ı	300					47,5				_
_	KGBS20-PP-AS	ı	300	20	+0,009 -0,001	70	45	47,5	58 ±0,15	45	35±0,02	
_	ı	KGBO20-PP-AS	250					45				10
KGB25-PP-AS	1	1	580					57,5				_
-	KGBS25-PP-AS	1	360	25	+0,011 -0,001	80	58	37,3	68 ±0,15	55	40±0,02	
_	-	KGBO25-PP-AS	490					54,5				12,5
KGB30-PP-AS	1	1	900					66,5				_
-	KGBS30-PP-AS	-	200	30	+0,011 -0,001	88	68	00,5	76 ±0,2	63	44±0,02	
-	-	KGBO30-PP-AS	780					63,5				13,6
KGB40-PP-AS	-	-	1 430					83,5				_
-	KGBS40-PP-AS	-	1470	40	+0,013 -0,002	108	80	3,,5	94 ±0,2	77	54±0,02	
-	-	KGBO40-PP-AS	1 280					79,5				18,2
KGB50-PP-AS	1	-	2 780					98				
_	KGBS50-PP-AS	-	2700	50	+0,013 -0,002	135	100	70	116 ±0,2	96	67,5±0,02	
_	-	KGBO50-PP-AS	2 460					93				22,7

¹⁾ Designs and dimensions, see page 31.

 $^{^{2)}}$ The basic load ratings are only valid for hardened (670 HV + 165 HV) and ground shaft raceways.

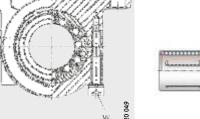

 $^{^{3)}}$ Basic load rating in main load direction.

 $^{^{4)}}$ Dimension B_2 on diameter F_W .


 $^{^{5)}}$ For fixing screws ISO 4762-8.8. If there is a possibility of settling, the screws should be secured against rotation.

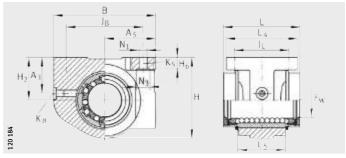
⁶⁾ The tolerances are valid for KGB..-PP-AS.

 $^{^{7)}}$ ① Main load direction



KGBO, KGBO..-PP-AS

KGBS..-PP-AS


											Lubrication nipple ¹⁾	Ball rows	Basic load	ratings ²⁾
L ₅	L ₄	J _{L4}	H ₂	A ₃	H ₆	N ₁	N ₃	K ₅ ⁵⁾	α	Width across flats W	K ₈		dyn. C	stat. C ₀
			±0,015						0			Quantity	N	N
20	12	10	20	15	6	5,5	10	M5	ı	2	NIPA1	5	540	385
		6,5							78	-		4	600 ³⁾	445 ³⁾
22	15	11	20	15	6	5,5	10	M5	ı	2	NIPA1	5	710	530
		6,5							78	-		4	800 ³⁾	620 ³⁾
28	20	14	25	21	8	6,6	11	M6	-	3	NIPA1	6	1 570	1 230
		9,5							60	_		5	1 600 ³⁾	1 280 ³⁾
40	28	20	30	23	10	6,6	11	M6	-	3	NIPA1	6	2 800	2 220
		15							60	_		5	2850 ³⁾	2 330 ³⁾
48	32	24	35	25	10	6,6	11	M6	-	4	NIPA2	6	3 600	2 850
		19							54	-		5	3 700 ³⁾	3 000 ³⁾
56	40	28	45	30	12	9	15	M8	-	4	NIPA2	6	6 000	4 400
		23							54	-		5	6 100 ³⁾	4 600 ³⁾
72	52	36	50	34	14	11	18	M10	ı	5	NIPA2	6	8 700	6 300
		28							54	-		5	8 900 ³⁾	6 600 ³⁾

Linear ball bearing and housing units

Closed, slotted or with segment cutout Sealed Greased, with relubrication facility

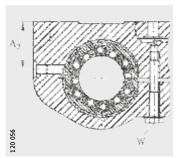
KGBA..-PP-AS

Dimension table	· Dimensions in m	m										
Designation			Mass	Dim	nensions			Mour	nting dimer	isions		
			m	F _W		В	L	Н	J _B	A ₅	B ₂ ⁴⁾	L ₄
			≈g		Toler- ances ⁷⁾		h12					
KGBA12-PP-AS	-	-	80					34			_	
	KGBAS12-PP-AS	-		12	+0,008	42	32		32±0,15	21±0,01		32
_	-	KGBAO12-PP-AS	70					30,5			7,7	
KGBA16-PP-AS	-	-	120		+0,009			41			_	
-	KGBAS16-PP-AS	-		16	-0,001	50	36		40±0,15	25±0,01		35
- KSD400 DD 46	-	KGBAO16-PP-AS	100					37			10,1	
KGBA20-PP-AS	- KGBAS20-PP-AS	_	200	20	+0,009	60	45	47,5	45±0,15	30±0.01	_	42
	-	KGBAO20-PP-AS	170	20	-0,001	60	45	44,5	45±0,15	30±0,01	10	42
KGBA25-PP-AS	_	-	170					44,5			10	
-	KGBAS25-PP-AS	_	410	25	+0,011	74	58	60	60±0,2	37±0,01	_	54
_	-	KGBAO25-PP-AS	350	1	-0,001	, ,		56		2, -1,11	12,5	
KGBA30-PP-AS	-	-										
_	KGBAS30-PP-AS	_	610	30	+0,011 -0,001	84	68	67	68±0,2	42±0,01	_	60
-	-	KGBAO30-PP-AS	530		,,,,,			63,5			13,6	
KGBA40-PP-AS	-	-	1 200					87				
-	KGBAS40-PP-AS	-	1 200	40	+0,013 -0,002	108	80	07	86±0,2	54±0,015	_	78
-	-	KGBAO40-PP-AS	1070					82,5			18,2	
KGBA50-PP-AS	-	-	1880					98			_	
_	KGBAS50-PP-AS	-	1000	50	+0,013 -0,002	130	100		108±0,2	65±0,015		70
-	-	KGBAO50-PP-AS	1650					93			22,7	

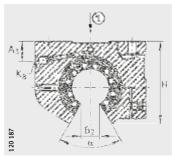
¹⁾ Designs and dimensions, see page 31.

²⁾ The basic load ratings are only valid for hardened (670 HV + 165 HV) and ground shaft raceways.

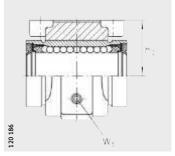
 $^{^{3)}\,}$ Basic load rating in main load direction.


⁴⁾ Dimension B₂ on diameter F_W.

⁵⁾ For fixing screws ISO 4762-8.8. If there is a possibility of settling, the screws should be secured against rotation.

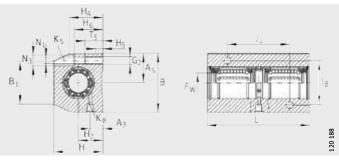

⁶⁾ Note maximum tightening torques.

⁷⁾ The tolerances are valid for KGBA..-PP-AS.


⁸⁾ ① Main load direction

KGBAO..-PP-AS

KGBAO..-PP-AS


												Lubrication nipple ¹⁾	Ball rows	Basic load	d ratings ²⁾
JL	L ₅	H ₂	A ₃	H ₆	N_1	N_3	K ₅ ⁵⁾	α	Width	across	flats	K ₈		dyn.	stat.
									W	W ₁ ⁶⁾				С	C ₀
				-0,5				0			max. Nm		Quantity	N	N
23±0,15	20	18±0,01	15	4,8	4,7	8	M4	-	7	-	_	NIPA1	5	540	385
			7,8					78	-	2	1		4	600 ³⁾	445 ³⁾
26±0,15	22	22±0,01	15	5,4	4,7	8	M4	-	7	-	-	NIPA1	5	710	530
			10					78	_	2,5	1,5		4	800 ³⁾	620 ³⁾
32±0,15	28	25±0,01	21	6,7	4,7	8	M4	-	- 7	_	_	NIPA1	6	1 570	1 230
			11					60	-	2,5	1,5		5	1 600 ³⁾	1 280 ³⁾
40±0,2	40	30±0,01	23	7,8	5,7	10	M5	-	- 8	_	_	NIPA1	6	2 800	2 220
			13					60	-	3	3		5	2 850 ³⁾	2 330 ³⁾
45±0,2	48	35±0,01	25	8,7	6,8	11	M6	_	- 10	_	_	NIPA2	6	3 600	2 850
			14					54	-	3	4		5	3 700 ³⁾	3 000 3)
58±0,2	56	45±0,01	30	11	9,2	15	M8	-	- 13	_	-	NIPA2	6	6 000	4 400
			18					54	_	4	5		5	6 100 ³⁾	4 600 ³⁾
50±0,2	72	50±0,015	34	12,5	9,2	15	M8	_	- 13		-	NIPA2	6	8 700	6 300
			19					54	-	4	7		5	8 900 ³⁾	6 600 ³⁾

Linear ball bearing and housing units

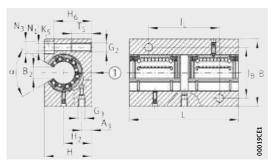
Tandem arrangement Closed or with segment cutout Sealed Greased, with relubrication facility

KTB..-PP-AS

Dimension table	${f e}\cdot$ Dimensions in n	nm											
Designation		Mass	Dime	nsions				Mountii	ng dime	ensions	S		
		m	F _W		В	L	Н	J _B	A ₅	B ₁	B ₂ ³⁾	J _L ⁴⁾	H ₂
		≈g		Toler- ances ⁶⁾	_			±0,15				±0,15	±0,015
KTB12-PP-AS	-	310	12	+0,008	43	76	35	30	21,5	34	-	40	18
_	KTBO12-PP-AS	260	12	0	42	/6	30	30	-	-	7,7	40	16
KTB16-PP-AS	-	460	16	+0,009	53	84	42	36	26,5	40	-	45	22
-	KTBO16-PP-AS	360	10	-0,001	50	04	35	30	-	-	10,1	45	22
KTB20-PP-AS	_	800	20	+0,009	60	104	50	45	30	44	-	55	25
-	KTBO20-PP-AS	620	20	-0,001	00	104	42	45	-	-	10	,,,	23
KTB25-PP-AS	-	1 490	25	+0,011 -0,001	78	130	60	54	39	60	-	70	30
-	KTBO25-PP-AS	1 180	25	-0,001	74	150	51	54	-	-	12,5	70	50
KTB30-PP-AS	_	2 300	30	+0,011	87	152	70	62	43,5	63	-	85	35
-	KTBO30-PP-AS	1840	30	-0,001	84	132	60	02	-	-	13,6	65))
KTB40-PP-AS	-	3 700	40	+0,013 -0,002	108	176	90	80	54	76	-	100	45
-	KTBO40-PP-AS	3 000	40	-0,002	100	1/0	77	00	-	-	18,2	100	4)
KTB50-PP-AS	-	6 600	50	+0,013	132	224	105	100	66	90	-	125	50
-	KTBO50-PP-AS	5 100	50	-0,002	130	224	88	100	-	_	22,7	123	

¹⁾ The basic load ratings are only valid for hardened (670 HV + 165 HV) and ground shaft raceways and where the two linear ball bearings are subjected to equal loading.

²⁾ Basic load rating in main load direction.


 $^{^{3)}}$ Dimension B_2 on diameter F_W .

 $^{^{4)}}$ Dimension J_L and lubrication hole symmetrical to the bearing length L.

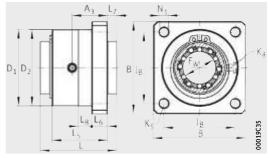
⁵⁾ Lubrication nipple. Designs and dimensions, see page 31.

⁶⁾ The tolerances are valid for KTB..-PP-AS.

⁷⁾ ① Main load direction

KTBO..-PP-AS

tes.	OCCE	100	and a
			-
1	***	***	1


											Fixing scre	ws	Basic load	ratings ¹⁾				
H ₄	A ₃	H ₅	T ₅	H ₆	N ₁	N ₃	G ₂	G ₃	K ₈ ⁵⁾	α	K ₅		dyn. C	stat. C ₀				
										o	ISO 4762	DIN 6912	N	N				
25,5	10	5,4	13	28	5,3	10	M6	_	NIPA1	-	M5	_	880	770				
_	6	_	15	25	5,5	10	IVIO	M6	_	78	_	M5	980 ²⁾	890 ²⁾				
20	12	6,9	13	35	5,3	5 2 10	E 2	E 2	г э	10	M6	_	NIPA1	-	M5	-	1 150	1 060
_	8	_	13	29,5		10	WIO	M6	_	78	-	M5	1 290 ²⁾	1 240 ²⁾				
33	13	7,4	18	37		11	11 M8	_	NIPA2	-	M6	_	2 5 5 0	2 450				
_	9	-	10	35,5	6,4			M6	_	60	=	M6	2 600 ²⁾	2 550 ²⁾				
40	15	8,3	22	49	8,4	4.5	M10	_	NIPA2	-	M8	-	4 5 5 0	4 450				
_	9	_	22	43	0,4	15		M8×1	_	60	-	M8	4 650 ²⁾	4 650 ²⁾				
44,5	16	9,3	26	52	10,5	18	M12	_	NIPA2	-	M10	_	5 900	5 700				
_	11	_	20	50,5	10,5	10	IVIIZ	M8×1	_	54	_	M10	6 000 ²⁾	6 000 ²⁾				
 56	20	12,4	34	64	13	20	M16	_	NIPA2	-	M12	-	8 800	9 700				
_	14	_	34	66	13	20	MITO	M8×1	_	54	-	M12	9 200 ²⁾	9 900 ²⁾				
60	20	11,1	34	70	12	13 20	20 M16	_	NIPA2	-	M12	_	12600	14 100				
_	14	-)4	77	1)			M8×1	_	54	=	M12	13 200 ²⁾	14 500 ²⁾				

Linear ball bearing and housing unit

With flange Sealed Greased, with relubrication facility

KFB..-B-PP-AS

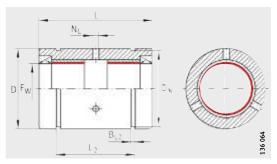
$\textbf{Dimension table} \cdot D$	imensions i	n mm									
Designation	Mass	Dimens	sions			Mountir	Mounting dimensions				
	m	F _W	F _W		L	L ₅	L ₆	L ₇	A ₃		
	≈g		Tolerances	_							
KFB12-B-PP-AS	80	12	+0,008	40	32	22	6	4,2	11,5		
KFB16-B-PP-AS	120	16	+0,009 -0,001	50	36	24	8	5,2	12,5		
KFB20-B-PP-AS	220	20	+0,009 -0,001	60	45	30	10	6,7	15,8		
KFB25-B-PP-AS	430	25	+0,011 -0,001	70	58	42	12	7	22		
KFB30-B-PP-AS	640	30	+0,011 -0,001	80	68	50	14	8	26		
KFB40-B-PP-AS	1 280	40	+0,013 -0,002	100	80	59	16	9,2	30,3		
KFB50-B-PP-AS	2160	50	+0,013	130	100	75	18	11,2	38,8		

 $^{^{1)}}$ The basic load ratings are only valid for hardened (670 HV + 165 HV) and ground shaft raceways.

²⁾ For fixing screws ISO 4762-8.8. If there is a possibility of settling, the screws should be secured against rotation.

³⁾ Lubrication nipple. Designs and dimensions, see page 31.

		Ball rows Basic load ratings ¹⁾							
N_1	K ₅ ²⁾	D ₁ +0,2	D ₂ g7	J _B	L ₈	K ₈ ³⁾	Quantity	C [*]	stat. C ₀
5,5	M5	31,5	32	30	10	NIPD3	5	540	385
5,5		37,5	38	35		NIPD3	5	710	530
		·			-	-	_		
6,6	M6	45,5	46	42	10	NIPD3	6	1 570	1 230
6,6	M6	57,5	58	54	10	NIPA1	6	2 800	2 2 2 2 0
9	M8	65,5	66	60	10	NIPA1	6	3 600	2850
11	M10	89,5	90	78	10	NIPA1	6	6 000	4 400
11	M10	97,5	98	98	10	NIPA2	6	8 700	6300



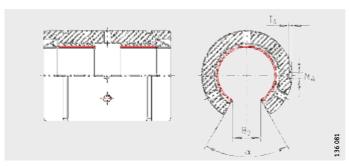
Plain bearing range

Linear plain bearings

Closed or with segment cutout Greased, with relubrication facility

PAB..-PP-AS, PABO..-PP-AS

Dimension table · Di	imensions in mm							
Designation		Mass	Dimensio	ns		Mountin	g dimensions	
		m	F _W	D	L	L ₂ ³⁾	B _{L2} ⁴⁾	
		≈g		h7 ²⁾	h12	H13	H13	
PAB12-PP-AS	-	26	12	22	32	22,6	1,3	
-	PABO12-PP-AS	21	12	2.2	32	22,0	1,5	
PAB16-PP-AS	-	34	16	26	36	24,6	1,3	
-	PABO16-PP-AS	28		26	36	24,0	1,3	
PAB20-PP-AS	-	68	20	32	45	31,2	1,6	
-	PABO20-PP-AS	58	20	52	43	31,2	1,0	
PAB25-PP-AS	-	132	25	40	58	43,7	1,85	
-	PABO25-PP-AS	113	25	40	76	43,7	1,65	
PAB30-PP-AS	-	169	30	47	68	51,7	1,85	
-	PABO30-PP-AS	143	30	47	00	51,7	1,05	
PAB40-PP-AS	-	426	40	62	90	60,3	2.15	·
-	PABO40-PP-AS	362	40	02	80	60,3	2,15	
PAB50-PP-AS	-	773	50	75	100	77,3	2,65	•
_	PABO50-PP-AS	657	30	/3	100	//,3	2,05	


 $[\]overline{\ }^{1)}$ The basic static load ratings are not valid if the bearings above are fitted – as shown on the following pages – in housings.

²⁾ The tolerance is only valid for PAB..-PP-AS.

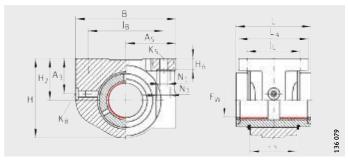
³⁾ Holes symmetrical to bearing length L.

⁴⁾ Slot dimensions suitable for retaining rings to DIN 471.

 $^{^{5)}}$ Dimension B_2 on diameter F_W .

PABO..PP-AS Segment cutout and fixing hole

						Basic load ratings ¹⁾
D _N	B ₂ ⁵⁾	T ₄	N ₄	N _L	α	stat. C ₀
				H13	o	N
21	_	-	_	2.5	_	60 000
21	7,6	1,2	2,2	2,5	78	60 000
24,9	-	-	-	2,5	_	96 000
24,9	10,1	1,2	2,2	2,5	78	96 000
30,3	-	-	-	2,5	_	150 000
50,5	10	1,2	2,2	2,3	60	130 000
37,5	_	_	_	2,5	_	250 000
57,5	12,5	1,5	3	2,3	60	230 000
44,5	_	-	-	3	-	375 000
44,5	13,6	1,5	3	3	54	373000
59	-	-	-	3	-	600 000
39	18,2	1,5	3	J	54	000 000
72	_	-	-	4	_	1 000 000
12	22,7	1,5	3	7	54	1 000 000

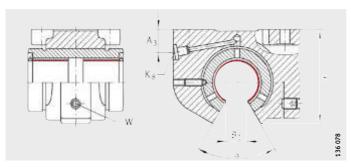


Plain bearing range

Linear plain bearing units

Closed or with segment cutout Sealed Greased, with relubrication facility

PAGBA..-PP-AS, PAGBA..-PP-AS


$\textbf{Dimension table} \cdot \textbf{D}$	imensions in mm									
Designation		Mass	Dimens	sions		Mountii	ng dimension	าร		
		m	F _W	В	L	Н	J_{B}	A ₅	B ₂ ²⁾	L ₄
									-	·
	-	≈g			h12					
PAGBA12-PP-AS	-	70 12 42 32 34		34	32±0,15	21±0,01	-	22		
-	PAGBAO12-PP-AS	60	12	42	32	30,5	J2 ±0,15	21	7,6	32
PAGBA16-PP-AS	-	110	—— 16	50	36	41	40±0,15	25±0,01	-	35
-	PAGBAO16-PP-AS	90			50	36,8	40±0,15	25	10,1	755
PAGBA20-PP-AS	-	180	180	60 45	4.5	47,5	45 ±0,15	30±0,01	-	42
_	PAGBAO20-PP-AS	160	20		45	44,5		30	10	
PAGBA25-PP-AS	-	350	25	74	58	60	60±0,2	37±0,01	_	- 54
-	PAGBAO25-PP-AS	310	25	74	58	56	00 ±0,2	37	12,5	
PAGBA30-PP-AS	-	480	30	84	68	67	68±0,2	42±0,01	-	60
-	PAGBAO30-PP-AS	430	30	84	00	63,5	68±0,2	42	13,6	60
PAGBA40-PP-AS	-	1 070	40	108	80	87	86±0,2	54±0,015	_	78
-	PAGBAO40-PP-AS	910	40	108	00	82,4	00 ±0,2	54	18,2	/0
PAGBA50-PP-AS	-	1 650	50	130	100	98	108±0,2	65±0,015	-	70
_	PAGBAO50-PP-AS	1 460	30	130	100	92,8	100 ±0,2	65	22,7	

¹⁾ Designs and dimensions, see page 31.

 $^{^{2)}}$ Dimension B_2 on diameter F_W .

³⁾ For fixing screws ISO 4762-8.8. If there is a possibility of settling, the screws should be secured against rotation.

⁴⁾ Note maximum tightening torques.

PAGBAO..-PP-AS Segment cutout

											Lubricatio nipple ¹⁾
J_L	L ₅	H ₂	A_3	H ₆	N ₁ ³⁾	N ₃ 3)	K ₅	Width across flats W ⁴⁾		α	K ₈
				-0,5					max. Nm	0	
22 : 0.45	20	18±0,01	15	4.0	4.7	8	M4	-	-	-	NIPA1
23±0,15	20	18	7,8	4,8	4,7	0	1414	2	1	78	INIPAI
26±0,15	22	22±0,01	15	5,4 4,7 8 M4	NA 6	-	-	-	NIPA1		
20±0,15	22	22	10	5,4	7,7		1414	2,5	1,5	78	MILAI
32±0,15	28	25±0,01	21	6,7	4,7	8	8 M4	-	_	-	NIPA1
J2±0,15	20	25	11	0,7	4,7	8	1414	2,5	1,5	60	
40±0,2	40	30±0,01	23	7,8	5,7	10	M5	-	-	-	NIPA1
40±0,2	40	30	13	7,0	3,7	10	כועו	3	3	60	
45±0,2	48	35±0,01	25	8,7	6,8	11	M6	-	_	-	NIPA2
45±0,2	40	35	14	0,7	0,0	11	MO	3	4	54	INIFAZ
58±0,2	56	45±0,01	30	11	9,2	15	M8	_	-	-	NIPA2
J6±0,2	70	45	18	11	2,2	13	IVI8	4	5	54	INIFAZ
50±0,2	72	50±0,015	34	12,5	9,2	15	15 M8	-	-	-	NIPA2
JU±0,2	1'-	50	19	12,5	2,2	1,7	IVIO	4	7	54	INII AZ

Solid shafts Hollow shafts

Solid shafts, hollow shafts

		Page
Matrix	Matrix for preselection of solid and hollow shafts	106
Product overview	Solid shafts, hollow shafts	108
Features	High precision raceway for economical linear guidance systems	109 110 112 113 114
Accuracy	Length tolerance	
Ordering example, ordering designation	Solid shaft, without machining	121 121 122
Dimension tables	Solid shafts	

Schaeffler Technologies WF 1 | 105

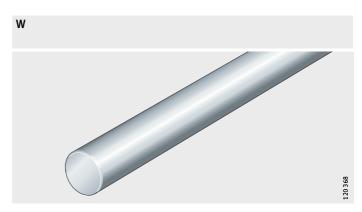
Matrix for preselection of solid and hollow shafts

Solid shafts and h	iollow sł	nafts	Shaft diameter d _{LW} mm from to	Standard tolerance for shaft
Solid shafts Without threaded holes	W		4 – 80	h6
Solid shafts With threaded holes	W		10 – 80	h6
Hollow shafts	WH		12 - 80	h7
Shafts According to customer requirements	W		10 - 80	h6, h7

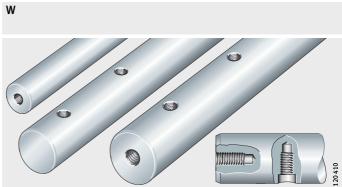
Definition:

- Available by agreementAvailable

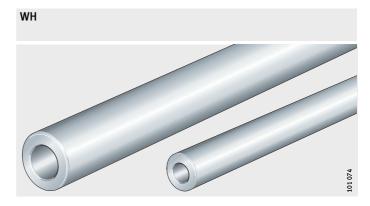
 $[\]overline{}^{1)}$ Not available for all diameters.

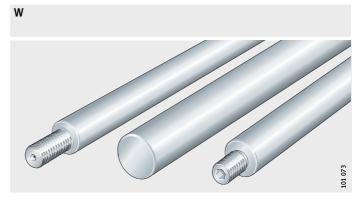

²⁾ For WH, Cf53 or C60.

í	î	ï
ı	ż	ı
ı		ı
ı	ė	ı
ı	į	ı
ŝ	ų.	빞


Special tolerances, only for shafts made from quenched and tempered steel Coating¹⁾ Description Steel Quenched and tempered steel²⁾ Corrosion-resistant steel¹⁾ Hard chromium Corrotect® Cf53 X46Cr13 X90CrMoV18 Page f7 109 j5 f7 113 j5 h7 109 j5 f7 114

Product overview Solid shafts, hollow shafts


Solid shafts Without threaded holes


Axial and radial threaded holes

Hollow shafts

Shafts according to customer requirements

Features

Solid and hollow shafts are high precision shafts made from quenched and tempered steel to rolling bearing quality and are supplied in metric sizes.

Hollow shafts are particularly suitable for reduced-mass designs. For location, solid shafts can be provided with radial and axial threaded holes or can, by agreement, be produced completely in accordance with a customer drawing, see page 113 to page 117.

High precision raceway for economical linear guidance systems

The material quality of the shafts guarantees high dimensional and geometrical accuracy (roundness, parallelism). Due to their high surface hardness and surface quality, the shafts are highly suitable as precision raceways for linear ball bearings.

High precision shafts are also suitable as guide rods for plain bushes, as stretch and levelling rollers and in the construction of equipment and automatic machinery.

They can be combined with linear ball bearings, yoke type, stud type, ball bearing and profiled track rollers to give linear guidance systems that are rigid, precise, economical and ready to fit, with high load carrying capacity and a long operating life.

Steels, hardness, surface, tolerances, lengths

Shafts made from Cf53 (material number 1.1213) are induction hardened and ground; the surface hardness is 670 HV + 165 HV (59 HRC + 6 HRC).

Hollow shafts are only available made from quenched and tempered steel.

Shafts made from corrosion-resistant steel to ISO 683-17 and EN 10880

As an alternative to quenched and tempered steel, solid shafts are also available in corrosion-resistant steels, for example X46Cr13 (material number 1.4034) or X90CrMoV18 (material number 1.4112). The surface hardness in the case of X46 is 520 HV + 115 HV (52 HRC + 4 HRC). The surface hardness in the case of X90 is 580 HV + 85 HV (54 HRC + 4 HRC).

These steels are particularly suitable for use in the foodstuffs industry, medical equipment and semiconductor technology. The suffix is X46 or X90.

Due to the hardness curve, shafts made from the materials X46Cr13 and X90CrMoV18 have only limited corrosion resistance on the end faces. This also applies to any soft-annealed areas.

Hardness, surface, tolerances, lengths

A uniform hardening depth will ensure a smooth transition from the hardened surface layer to the tough, normally annealed core, which can support bending stresses.

The standard surface is Ra 0,3.

Solid shafts have the normal tolerance h6, while hollow shafts

High precision shafts are available in single piece lengths up to 6 000 mm. Longer shafts are available by agreement and are assembled (with mortice and tenon joints).

Available steels and tolerances, see page 112.

Coatings

Coatings and hard chromium coating provide optimum anti-wear and anti-corrosion protection for shafts and are optional. The characteristics of the coatings are also shown in the table Coatings, page 111.

Hard chromium coating – Anti-wear protection

Hard chromium coating is suitable for applications in which a high degree of anti-wear protection is required. The chromium coating also offers good corrosion resistance.

Chromium coated shafts are to tolerance h7.

The thickness of the chromium coating is at least 5 $\,\mu$ m, the hardness is 800 HV to 1050 HV.

The suffix is CR.

Corrotect® – Anti-corrosion protection

Corrosion-resistant shafts are coated with the special coating Corrotect[®] and, for production reasons, have centring or threaded holes in the end faces.

The inside diameter of hollow shafts is not coated.

Corrotect[®] is resistant to neutral, organic fluids such as oil, brake fluid and petrol. For applications where aqueous salt solutions in the pH range from 5 to 10 are present, Corrotect[®] is also suitable due to its good resistance.

The suffix is RRF.

Corrotect® reduces the adhesion of weld spatter.

Corrotect[®] can be worn away by contact seals.

The coating is not permitted for direct contact with foodstuffs and is not suitable in abrasive ambient media.

For application in the food industry, the Schaeffler Group also offers the special coating $\sf Corrotect^{\circledR}$ Cr(VI)-free.

It thus complies with the requirements for RoHS in accordance with EU Directive 2002/95/EC. All other advantages are identical with the standard Corrotect[®] coating.

The suffix is RROC.

Coatings

Feature	Coating			
	Corrotect [®]	Hard chromium		
	Cr(VI)-containing ¹⁾	CR(VI)-free		
Suffix	RRF	RROC	_	
Colour	Black	Colourless, blue to iridescent	Chromium	
Coating thickness in µm	0,5 – 5,0	0,5 – 5,0	5,0 – 15,0	
Composition	Zinc alloyed with iron and cobalt	Zinc alloyed with iron	Chromium	
Coating hardness in HV	300	300	800 – 1 050	
Anti-corrosion protection ²⁾ in h	96	96	120	
Anti-wear protection	_	_	yes	
Maximum shaft length in mm	3 500	3 500	$\emptyset 6 - 8 = 3900$ $\emptyset \ge 10 = 5900$	
Cr(VI)-free	no	yes	no	

¹⁾ Cr(VI)-containing parts are not suitable for the food industry.

²⁾ Salt spray test to DIN 50021.

Machined surfaces, end faces and bores may be uncoated.

Available materials, coatings, tolerances Solid and hollow shafts

Shaft diameter	Solid shafts				Hollow shafts	
	Material					
	Quenched and tempered steel		X46Cr13	X90CrMoV18	Quenched and tempered steel	
	Tolerance ³⁾	CR ¹⁾	RRF RROC ²⁾			Tolerance
mm	h6	h7	h6	h6	h6	h7
4	•	_		-	•	-
5	•	_		-	_	-
6	•	•		•	•	_
8	•	•		•	•	_
10	•	•		•	•	_
12	•	•		•	•	•
14	•	•		•	•	_
15	•	•		•	•	_
16	•	•		•	•	•
20	•	•		•	•	•
25	•	•		•	•	•
30	•	•		•	•	•
40	•	•		•	•	•
50	•	•		•	•	•
60	•	•		-	_	•
80	•	•		-	-	•

- Available by agreement.
- Available design.

- $^{2)}$ Corrotect $^{\circledR}$ coating, see page 110.
- 3) Other tolerances available by agreement.

¹⁾ Hard chromium coating, see page 110.

Solid shafts with threaded holes

Where shafts are to be supported or connected to other elements, fixing holes are required.

The standard threaded holes for solid shafts are defined as hole patterns B01 to B05 in accordance with the table.

In addition, holes may be made in accordance with a customer drawing with or without threads, *Figure 1*, page 114 to *Figure 13*, page 117.

Ordering examples, see page 121.

Codes for hole patterns

Code	Design of holes
B01	Axial threaded hole on one side
B02	Axial threaded holes on both sides
B03	Radial threaded holes
B04	Radial threaded holes and axial threaded hole on one side
B05	Radial threaded holes and axial threaded holes on both sides

Shafts according to customer requirements

In order to place enquiries for special shafts, please use your own drawing or copy our templates and complete using the required values, Figure 1 to Figure 13, page 117.

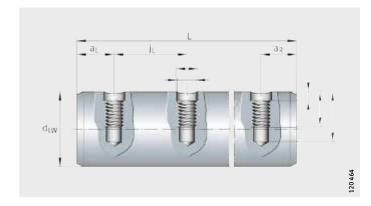
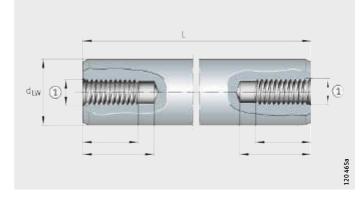
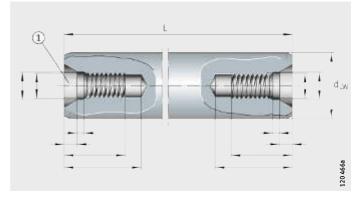




Figure 1 Radial holes with and without threads

① Diameter to DIN 336 or DIN 13

Figure 2 Internal threaded hole, on one or both sides

① For threaded hole with centring hole DIN 332-D recommended

Figure 3 Internal threaded hole with centring hole

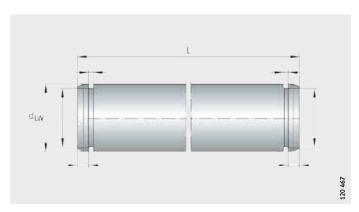


Figure 4 Undercut for retaining ring

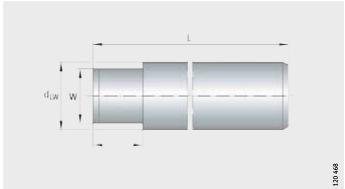
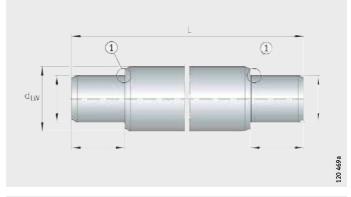



Figure 5 Width across flats W

① Undercut type F DIN 509 (both sides)

Figure 6 Journal

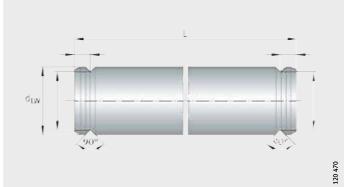
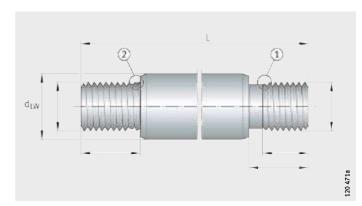
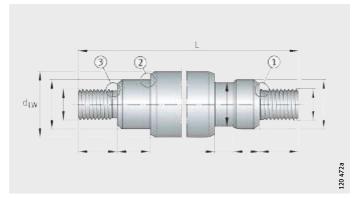



Figure 7 90° undercut



1) Thread runout to DIN 76-1A, with undercut to DIN 76-A ② With undercut, DIN 76-A recommended

Figure 8 Threaded journal

1) With undercut, DIN 76-A recommended 2 With undercut type F, DIN 509 recommended 3 Thread runout to DIN 76-1A

Figure 9
Journal and threaded journal

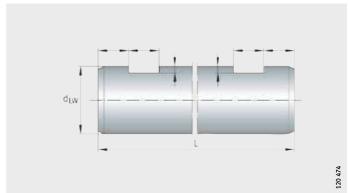


Figure 10 Slot

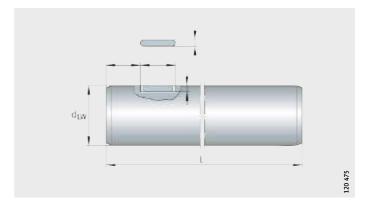


Figure 11 Keyway

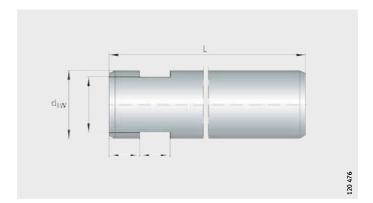


Figure 12 Width across flats

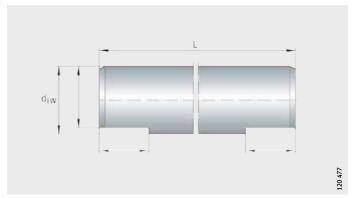
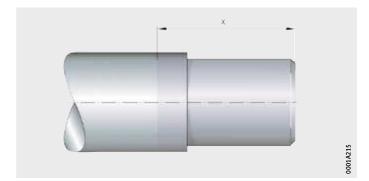


Figure 13 Flattened area



Shaft machining, shaft specification Soft annealed shafts

Additional machining (such as journals, flattened areas, external threads) may require soft annealing of the corresponding areas. In this case, slight changes may occur in the dimensional and geometrical tolerances as well as the surface quality of the soft annealed area, *Figure 14*. Material discolouration may occur in the annealed area and there may be residual hardness in the transitional zone.

In the case of corrosion-resistant steels, the X class materials, the anti-corrosion protection is restricted here.

x = soft annealed area

Figure 14
Soft annealed shaft

Standard chamfer

After cutting to length, both ends of the shaft are chamfered, *Figure 15* and table. However, they can also be supplied without chamfers as a parting cut, *Figure 16*, page 119.

Chamfer, as a function of shaft diameter

Shaft diameter d _{LW}	Chamfer x	Axial runout t ₄
mm	mm	mm
d _{LW} ≦ 8	0,5 × 45°	0,2
8 < d _{LW} ≦10	1+1	0,2
10 < d _{LW} ≦30	1,5 ⁺¹	0,3
$30 < d_{LW} \le 80$	2,5 ⁺¹	0,5

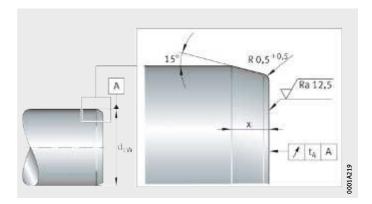
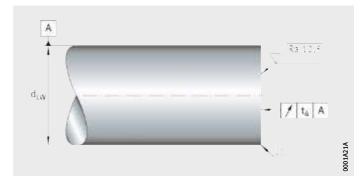



Figure 15 Standard chamfer

Parting cut

In the case of a parting cut, the shaft is only cut to length, *Figure 16*. There is no additional machining of the end faces. A burr may be present. The suffix is T.

t₄ = axial runout tolerance, table, page 118

Figure 16 Parting cut

Straightness

The standard straightness is shown in Figure 17.

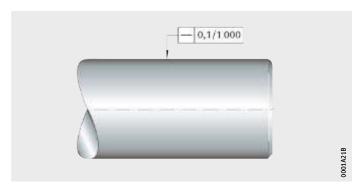


Figure 17 Straightness

Shafts with mortice and tenon joint

If the shaft length is in excess of the stock length, the shafts are joined together.

The individual sections of shafts are joined by means of mortice and tenon joints, *Figure 18*. The joints are marked accordingly. Shafts screwed together are available by agreement.

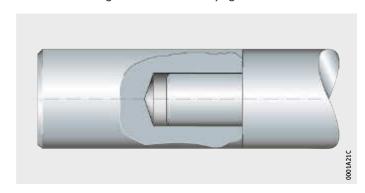


Figure 18 Shaft with mortice and tenon joint

Accuracy Length tolerance

Length tolerances are dependent on the shaft length, see table and *Figure 19*.

Special tolerances are available by agreement.

Tolerance

Shaft length L mm		Tolerance mm
over	incl.	max.
-	400	±0,5
400	1 000	±0,8
1 000	2 000	±1,2
2000	4 000	±2
4 000	6 000	±3

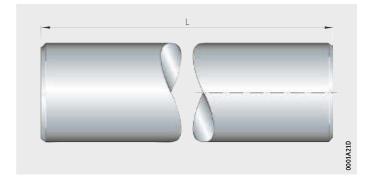


Figure 19 Length tolerance

Straightness value to ISO 13012

The measurement points are separated by a distance of 1000 mm. Shafts < 1000 mm have a maximum of two measurement points, *Figure 20*.

The straightness tolerance is half of the dial gauge value with a shaft revolution of 360°.

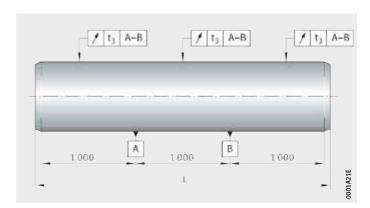


Figure 20 Straightness measurement

Ordering example, ordering designation

Solid shaft,	Type	W
without machining	Shaft diameter d _{IW}	20
	Tolerance	h6
	Material	Cf53
	Coating	_
	Length	1 200

Parting cut –

Standard chamfer No suffix

Ordering designation W20/h6-Cf53-1200

Hollow shaft,	Туре	WH
without machining	Shaft diameter d _{LW}	20
	Tolerance	h7
	Material	C60
	Coating	_
	Length	1 500
	D 12	-

Parting cut T Standard chamfer -

Ordering designation WH20/h7-C60-1 500-T

Solid shaft,	Type	W
with machining	Shaft diameter d _{LW}	30
	Tolerance	h7

Cf53 Material Coating Cr Hole pattern B05 Axial threaded hole M12 Radial threaded hole M10 Hole pitch, radial threaded hole 100 Length 1110 Parting cut Τ Standard chamfer Distance a_L 60 Distance a_R 50

Ordering designation **W30/h7-Cf53-Cr-B05/M12-M10**×**100-1110-T-60-50**

Solid shaft, according to customer requirements

If the standard designations are not sufficient to describe the shaft, please submit a drawing with your enquiry.

Possible ordering designation for standard shafts

W, WH Type Shaft diameter d_{IW} 10 to 80 Tolerance¹⁾ h6, h7 Material²⁾ Cf53, X46, X90 Coating Cr, RROC

Hole pattern B01, B02, B03, B04, B05

Axial threaded hole³⁾ M3 to M24 Radial threaded hole³⁾ M4 to M14

Hole pitch, Measured from centre point of hole,

radial threaded hole j_L Figure 21

Length³⁾ Single piece up to 6 000

Parting cut Τ

Standard chamfer No suffix

Start of shaft - first hole, Distance a₁

Figure 21

Last hole - end of shaft, Distance a_R

Figure 21

³⁾ Dependent on diameter, see dimension table page 124 to page 126.

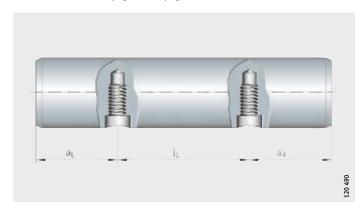


Figure 21 Hole pitch of radial threaded hole j

¹⁾ Available tolerances are dependent on diameter, see dimension table page 124 and page 126.

²⁾ Hollow shafts are only available in Cf53 and C60.

Shaft guidance system

Elements of shaft guidance systems (linear ball bearings, solid and hollow shafts) must be ordered separately.

The ordering designation of an element comprises the designation and additional specific data – where necessary, see ordering designation for shaft with axial threaded hole, linear ball bearing and *Figure 22*.

The designations are given in the dimension tables.

The unit is described in greater detail by means of the additional

data.

Required

A shaft guidance system in a corrosion-resistant design with two sealed and corrosion-resistant linear ball bearings.

Shaft with axial threaded holes

Corrosion-resistant shaft	W20/h6-X90
Code for hole pattern	B02
Axial threaded hole	M8
Shaft length	3 500

Ordering designation

1×W20/h6-X90-B02/M8-3500

Linear ball bearing

Linear ball bearing	KB
Size code	20
Contact seals on both end faces	PP
Corrotect [®] coating	RR
Relubrication facility	AS

Ordering designation

2×KB20-PP-RR-AS

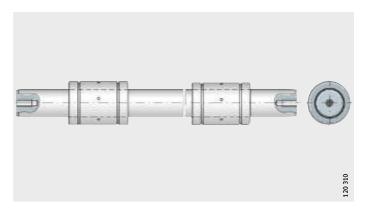
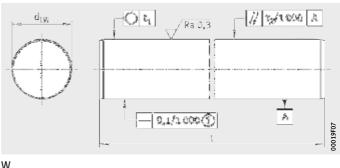
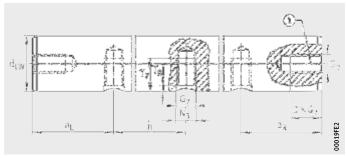



Figure 22
Shaft with axial threaded holes,
two linear ball bearings

Solid shafts

W ① 3)

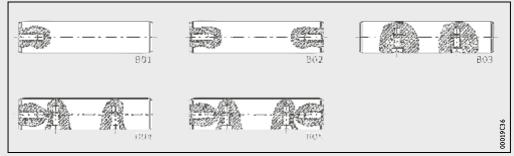

Dimension tabl	le · Dimensions	in mm					
Designation	Mass	Dimensi	ons	Tolerance	Roundness	Parallelism	Surface hardening depth
	m	d _{LW}	L	h6	t ₁	t ₂ ¹⁾	SHD ²⁾
	≈kg/m			μm	μm	μm	min.
W04	0,1	4	2 500	0 -8	4	5	0,4
W05	0,15	5	4 0 0 0	0 -8	4	5	0,4
W06	0,22	6	4 0 0 0	0 -8	4	5	0,4
W08	0,39	8	4000	0 -9	4	6	0,4
W10	0,62	10	6 0 0 0	0 -9	4	6	0,4
W12	0,89	12	6000	0 -11	5	8	0,6
W14	1,21	14	6 0 0 0	0 -11	5	8	0,6
W15	1,39	15	6000	0 -11	5	8	0,6
W16	1,58	16	6000	0 -11	5	8	0,6
W20	2,47	20	6000	0 -13	6	9	0,9
W25	3,85	25	6 0 0 0	0 -13	6	9	0,9
W30	5,55	30	6000	0 -13	6	9	0,9
W40	9,87	40	6 0 0 0	0 -16	7	11	1,5
W50	15,41	50	6000	0 -16	7	11	1,5
W60	22,2	60	6 0 0 0	0 -19	8	13	2,2
W80	39,45	80	6000	0 -19	8	13	2,2

 $[\]overline{}^{1)}$ Differential diameter measurement.

 $^{^{2)}}$ To DIN ISO 13012.

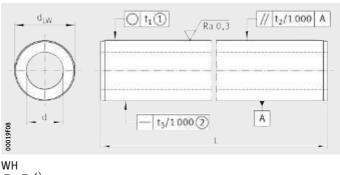
 $^{^{3)}}$ ① For shaft length < 400 mm, max. straightness tolerance of 0,04 mm.

Recommended threaded holes for solid shafts


Axial and radial threaded holes

Dimensi	nension table · Dimensions in mm																		
Desig-	Axia	l thre	aded	hole							Radia	al threa	aded ł						
nation	G ₂										j _L			a _{L min} 1) Hole	a _{R min} 1) Hole	T ₇	T ₈	N ₃	G ₇
d _{LW}														pattern B03	pattern B04-B05				
W08	М3	_	ı	ı	ı	-	-	-	-	_	-	_	_	_		-	_	-	-
W10	М3	M4	-	-	-	-	-	-	_	_	_	_	_	_		-	_	-	-
W12	-	M4	M5	-	-	-	-	-	-	-	75	-	120	10		7	2	5	M4
W14	-	M4	M5	M6	ı	-	-	-	_	_	-	-	-	_		-	-	-	-
W15	-	-	M5	M6	M8	-	ı	-	-	-	-	-	-	_		-	-	-	-
W16	_	_	M5	M6	M8	-	-	-	-	-	75	100	150	15		9	2,5	6	M5
W20	-	-	ı	ı	ı	ı	1	ı	-	-	ı	-	150	15		9	2,5	6	M5
W20	_	_	ı	M6	M8	M10	1	1	-	-	75	100	150	15		11	3	7	M6
W25	-	-	ı	ı	ı	-	-	-	-	-	-	-	150	15		11	3	7	M6
W25	_	_	-	-	M8	M10	M12	-	-	-	75	120	200	15	$3 \cdot G_2 + G_7$	15	3	9	M8
W30	_	_	-	-	-	_	_	_	_	_	_	_	150	15		11	3	7	M6
W30	_	_	ı	ı	ı	M10	M12	M16	-	_	100	150	200	20		17	3,5	11	M10
W40	_	_	ı	ı	ı	M10	M12	M16	-	-	150	200	300	20		19	4	11	M10
W40	_	_	ı	ı	ı	M10	M12	M16	-	_	100	-	_	20		21	4	13	M12
W40	_	-	-	-	-	-	-	-	_	_	_	_	150	20		19	4	11	M10
W50	_	_	-	-	-	_	M12	M16	M20	_	_	200	300	20		21	4	13	M12
W50	_	-	-	-	-	-	M12	M16	M20	-	100	-	-	20		25	4	15	M14
W60	-	-	-	_	-	-	-	M16	M20	M24	-	-	-	_		-	-	-	-
W80	_	-	-	-	-	-	-	M16	M20	M24	-	-	-	_		-	_	-	-

¹⁾ $\overline{a_L}$, a_R are dependent on the length of the shaft.


Calculation, see page 134.
In the case of variants in accordance with codes B04 and B05, the axial threaded holes must be taken into consideration.

 $^{^{2)}}$ ① Depending on the hole diameter, the shaft diameter may be larger in the region of the axial hole, as a result of which there may be a deviation from the tolerances.

Codes B01 to B05 for hole patterns

Hollow shafts

WH		
1),	2	4)

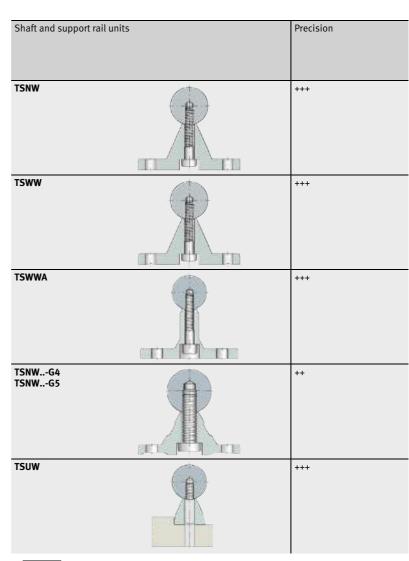
Dimension table · Dimensions in mm													
Designation	Mass	Dimensi	ons	Inside diameter	Tolerance	Parallelism	Straightness tolerance	Surface hardening depth					
	m	d _{LW}	L	d ¹⁾	d _{LW} h7 ³⁾	t ₂	t ₃	SHD ²⁾					
	≈kg/m		max.		μm	μm	μm	min.					
WH12	0,79	12	5 700	4 ±0,45	0 -18	7	0,3	0,8					
WH16	1,26	16	5 700	7 ±0,15	0 -18	7	0,3	0,8					
WH20	1,28	20	6 000	14 ±0,15	0 -21	9	0,2	1,2					
WH25	2,4	25	7 100	15,4±0,15	0 -21	9	0,2	1,2					
WH30	3,55	30	7 100	18 ±0,15	0 -21	9	0,2	1,5					
WH40	5,7	40	7 100	26 ±0,15	0 -25	11	0,1	1,5					
WH50	10,58	50	6 500	28 ±0,25	0 -25	11	0,1	1,5					
WH60	14,2	60	7 300	36 ±0,3	0 -30	13	0,1	1,5					
WH80	20,8	80	7 300	57,4±0,35	0 -30	13	0,1	2,2					

¹⁾ Difference in the wall thickness relative to the original material $\pm 5\%$.

²⁾ To DIN ISO 13012.

 $^{^{}m 3)}\,$ Diameter tolerance h6 available by agreement.

 ⁴⁾ ① The roundness corresponds to no more than half the diameter tolerance.
 ② For shaft length < 500 mm, max. straightness tolerance of 0,1 mm.



Shaft and support rail units

		Page
Matrix	Matrix for preselection of shaft and support rail units	130
Product overview	Shaft and support rail units	132
Features	Multi-piece raceway shafts and shaft and support rail units	133
Design and safety guidelines	Hole patterns for shaft and support rail units	134
Accuracy	Length tolerances for shafts and shaft and support rail units	136
Ordering example, ordering designation	Shaft and support rail unit	
Dimension tables	Shaft and support rail units	138

Matrix for preselection of shaft and support rail units

Definition: +++ Very good ++ Good Available

¹⁾ Location by screw mounting from below; threaded hole in the shaft.

Shaft diameter d _{LW} in mm							Features	Location	Description	
								Thread	Through hole	
12	16	20	25	30	40	50				Page
•	•	•	•	•	•	•	For location from above	_	yes	133
•	•	•	•	•	•	•	For location from above High position of shaft	_	yes	133
•	•	•	•	•	-	-	For location from above Narrow crosspiece	-	yes	133
•	•	•	•	•	•	_	For location from above Accuracy class (G4, G5) dependent on shaft diameter Economical	-	yes	133
•	•	•	•	•	•	•	Threaded holes from below	1)	-	133

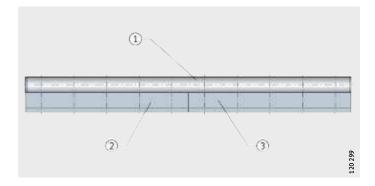
Product overview Shaft and support rail units

Shaft and support rail units

Features

Shaft and support rail units TS..W are composite units comprising a raceway shaft screw mounted to an aluminium support rail. The shaft protrudes approx. 2 mm to 3 mm beyond the end of the support rail at both ends.

The raceway shaft is made from quenched and tempered steel, see page 109. Corrosion-resistant design available by agreement. Shaft and support rail units are composed of several individual sections depending on their length.


Shafts made from special materials such as those with coatings are available by agreement.

Multi-piece raceway shafts and shaft and support rail units

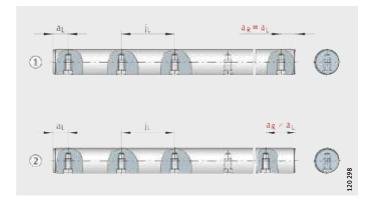
If the guidance systems are of such a length that shaft and support rail units TS..W cannot be achieved using single-piece shafts, shafts and support rails are supplied as multi-piece units, *Figure 1*. The joint locations on the shaft sections have mortice and tenon joints and are polished.

The joint locations on the shafts and support rails are offset from each other.

The maximum length of single-piece shaft and support rail units is 6 000 mm.

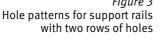
① Shaft ② Support rail 1 ③ Support rail 2

3 Support rail 2


Figure 1
Shaft and support rail unit with multiple support rail sections

Design and safety guidelines Hole patterns for shaft and support rail units

Unless stated otherwise, raceway shafts and shaft and support rail units are supplied with a symmetrical hole pattern, Figure 2 to Figure 4.


An asymmetrical hole pattern may be available at customer request. In this case, $a_{L max} \ge a_{L} \ge a_{L min}$ and $a_{R max} \ge a_{R} \ge a_{R min}$.

- (1) Symmetrical hole pattern
- (2) Asymmetrical hole pattern

Figure 2 Hole patterns for shafts with one row of holes

- İι ak = a___ 0 0 (1) 0 \oplus 0 0 0 0 0 0 (2) 0
- 1) Symmetrical hole pattern (2) Asymmetrical hole pattern
- Figure 3

1) Support rail

Figure 4 Hole patterns for shaft and support rail unit TSUW

134 | WF 1 Schaeffler Technologies

Maximum number of pitches between holes

The number of pitches between holes is the rounded whole number equivalent to:

$$n = \frac{1 - 2 \cdot a_{|L|m|lr}}{j_{|L|}}$$

The distances a_L and a_R are generally determined by:

$$a_L + a_R = I - n \cdot j_L$$

For raceway shafts and shaft and support rail units with a symmetrical hole pattern:

$$\mathbf{a}_{L} = \mathbf{a}_{R} = \frac{1}{2} \cdot \left(\mathbf{l} - \mathbf{n} \cdot \mathbf{j}_{L} \right)$$

Number of holes:

$$x = n + 1$$

mm

Maximum possible number of pitches or recommended distance between screws on shaft and support rail units with T-slots

mm

Length of shaft and support rail unit

_L, a_R mr

Distance between start or end of shaft and support rail unit and nearest hole

a_{L min}, a_{R min} mm

Minimum values for a_L, a_R according to dimension tables

 $a_{L max}$, $a_{R max}$ mm

Maximum values for a_L , a_R according to dimension tables

j_L mm

Distance between holes

x mm

Number of holes on shaft and support rail units with T-slots: number of screws.

If the minimum and maximum values for a_L and a_R are not observed, the counterbores of the holes may be intersected. The position a_L for shaft and support rail unit TSUW is shown in *Figure 4*, page 134.

Accuracy

Length tolerances for shafts and shaft and support rail units

The length tolerances are shown in the table.

Tolerances

Length of shaft or shaft and support rail unit L	Length tolerance
Single-piece and multi-piece raceway shaft and support rail units	$\pm 0,1\%$ of total length
L≦ 400	±0,5
400 < L ≦ 1 000	±0,8
$1000 < L \le 2000$	±1,2
$2000 < L \le 4000$	±2
$4000 < L \le 6000$	±3

Ordering example, ordering designation

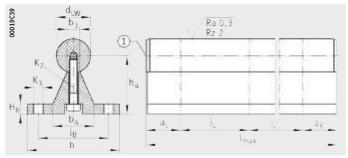
Shaft and support rail unit

Type **TSNW** Shaft diameter d_{LW} 25 Length 1 253 Distance a_I 26 Distance a_R 27

Corrosion-resistant design Available by agreement

Ordering designation

TSNW25-1253-26-27


Possible ordering designation for standard shaft and support rail units

TSWW, TSNW, TSUW, TSWWA Type

Shaft diameter d_{IW} 12 to 50 Length 1 200

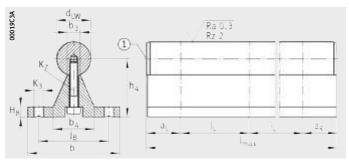
Start of shaft – first hole Distance a_l Distance a_R Last hole – end of shaft Corrosion-resistant design Available by agreement

TSNW

① 5)

Dimension ta	Dimension table ⋅ Dimensions in mm														
Designation	Mass	Dime	nsions			Mounti	ing dime	nsions							
	m	d_{LW}	b	h ₄ ¹⁾	l _{max} ²⁾	b ₃	b ₄	j _Β	j _L	a_L/a_R	3)	H ₈	K ₃ ⁴⁾	K ₇	
	≈g/m	h6		±0,02	±3					min.	max.			ISO 4762	
TSNW12	1 670	12	40	22	6 000	5	17	29	75	20	69	5	4,5	M4×18	
TSNW16	2 950	16	45	26	6 000	6,8	22,4	33	100	20	93	5	5,5	M5×22	
TSNW20	3 950	20	52	32	6 000	7,5	26,3	37	100	20	92	6	6,6	M6×25	
TSNW25	5 600	25	57	36	6 000	9,8	30	42	120	20	110	6	6,6	M8×30	
TSNW30	7 880	30	69	42	6 000	11	33,4	51	150	20	139	7	9	M10×35	
TSNW40	12 830	40	73	50	6 000	14,5	39,4	55	200	20	189	8	9	M10×35	
TSNW50	19 380	50	84	60	6 000	18,5	45,2	63	200	20	188	9	11	M12×40	

¹⁾ In relation to the nominal shaft diameter, measured whilst clamped.


If there is a possibility of settling, the screws should be secured against rotation.

²⁾ Maximum length of single-piece shaft and support rail units; longer shaft and support rail units, see page 133. Depending on the length of the shaft and support rail unit, the support rail is composed of several individual sections.

 $^{^{\}rm 3)}$ Dimensions a_L/a_R are dependent on the length of the shaft and support rail unit. Calculation, see page 135.

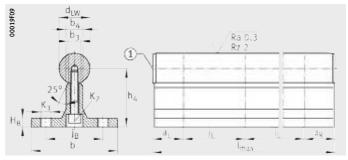
⁴⁾ For fixing screws DIN 7984.

^{5) (1)} The shaft may if necessary protrude on both sides beyond the support rail by approx. 3 mm.

TSWW

Dimension ta	Dimension table · Dimensions in mm														
Designation	Mass	Dimer	nsions			Mounting dimensions									
	m	d_{LW}	b	h ₄ ¹⁾	l _{max} ²⁾	b ₃	b ₄	j _Β	j _L	a_L/a_R	3)	H ₈	K ₃ ⁴⁾	K ₇	
	≈g/m	h6		±0,02	±3					min.	max.			ISO 4762	
TSWW12	1 670	12	40	22	6 000	5	17	29	120	20	114	5	4,5	M4×18	
TSWW16	3 150	16	54	32	6 000	6,8	24,7	41	150	20	143	6	5,5	M5×25	
TSWW20	4 0 3 0	20	54	34,02	6 000	7,8	24,7	41	150	20	143	6	5,5	M5×25	
TSWW25	5 900	25	65	39,66	6 000	9,3	30,3	51	150	20	142	6	6,6	M6×30	
TSWW30	7 580	30	65	42,19	6 000	9,3	30,3	51	150	20	142	6	6,6	M6×30	
TSWW40	14 250	40	85	60	6 000	16,3	46	65	150	20	139	10	9	M10×45	
TSWW50	19 750	50	85	65,06	6 000	16,3	46	65	150	20	139	10	9	M10×45	

 $[\]overline{}^{(1)}$ In relation to the nominal shaft diameter, measured whilst clamped.



²⁾ Maximum length of single-piece shaft and support rail units; longer shaft and support rail units, see page 133. Depending on the length of the shaft and support rail unit, the support rail is composed of several individual sections.

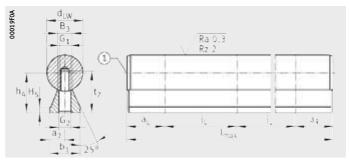
 $^{^{\}rm 3)}$ Dimensions a_L/a_R are dependent on the length of the shaft and support rail unit. Calculation, see page 135.

⁴⁾ For fixing screws ISO 4762 or ISO 4017 (TSWW12, DIN 7984). If there is a possibility of settling, the screws should be secured against rotation.

 $^{^{5)}}$ ① The shaft may if necessary protrude on both sides beyond the support rail by approx. 3 mm.

TSWWA ① ⁶⁾

Dimension tab	Dimension table · Dimensions in mm														
Designation	Mass	Dime	Dimensions Mounting dimensions												
	m	d_{LW}	b	h ₄ ¹⁾	l _{max} ²⁾	b ₃	b ₄	j _B	j _L	a _L /a _R	3)	H ₈	K ₃ ⁴⁾	K ₇	
	≈g/m	h6		±0,02	±3					min.	max.			ISO 4762	
TSWWA12	1 930	12	43	28	6000	5,4	9	29	75	20	69	5	4,5	M4×25 ⁵⁾	
TSWWA16	2 800	16	48	30	6000	7	10	33	100	20	93	5	5,5	M5×25	
TSWWA20	4 120	20	56	38	6000	8,2	11	37	100	20	92	6	6,6	M6×30	
TSWWA25	5 8 3 0	25	60	42	6000	10,4	14	42	120	20	110	6	6,6	M8×30	
TSWWA30	8 500	30	74	53	6000	11	14	51	150	20	139	8	9	M10×40	


 $[\]overline{\mbox{ln relation}}$ to the nominal shaft diameter, measured whilst clamped.

²⁾ Maximum length of single-piece shaft and support rail units; longer shaft and support rail units, see page 133. Depending on the length of the shaft and support rail unit, the support rail is composed of several individual sections.

 $^{^{\}rm 3)}$ Dimensions a_{L}/a_{R} are dependent on the length of the shaft and support rail unit. Calculation, see page 135.

 $^{^{4)}}$ For fixing screws ISO 4762 or ISO 4017. If there is a possibility of settling, the fixing screws should be secured against rotation.

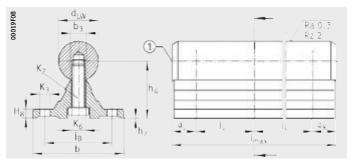
 $^{^{6)}\,\, \}textcircled{\scriptsize 1}\,$ The shaft protrudes on both sides beyond the support rail by approx. 2 mm.

TSUW

Dimension ta	Dimension table · Dimensions in mm														
Designation	Mass	Dime	nsions			Mounti	ng dimer	sions							
	m	d _{LW}	b ₁	h ₄ ¹⁾	l _{max} ²⁾	a ₂	B ₃	j _L	a_L/a_R	3)	H ₅	G_1	G_2	t ₇	
	≈g/m	h6		±0,02	±3				min.	max.					
TSUW12	1 100	12	11	14,5	6 000	5,5	5	75	20	70	3	M4	4,5	15,5	
TSUW16	1880	16	14	18	6 000	7	6,8	75	20	70	3	M5	5,5	19	
TSUW20	2 9 2 0	20	17	22	6 000	8,5	7,8	75	20	69	3	M6	6,6	23	
TSUW25	4 4 2 0	25	21	26	6 000	10,5	9,8	75	20	68	3	M8	9	28,5	
TSUW30	6 220	30	23	30	6 000	11,5	11	100	20	92	3	M10	11	31,5	
TSUW40	11 030	40	30	39	6 000	15	14,5	100	20	91	4	M12	13,5	39,5	
TSUW50	16980	50	35	46	6 000	17,5	18,5	100	20	90	5	M14	15,5	46	

Attention!

The shaft and support rail are supplied unassembled.



¹⁾ In relation to the nominal shaft diameter, measured whilst clamped.

²⁾ Maximum length of single-piece shaft and support rail units; longer shaft and support rail units, see page 133. Depending on the length of the shaft and support rail unit, the support rail is composed of several individual sections.

 $^{^{\}rm 3)}$ Dimensions $a_{\rm L}/a_{\rm R}$ are dependent on the length of the shaft and support rail unit. Calculation, see page 135.

 $^{^{\}rm 4)}$ ① The shaft protrudes on both sides beyond the support rail by approx. 2 mm.

TSNW..-G4, TSNW..-G5

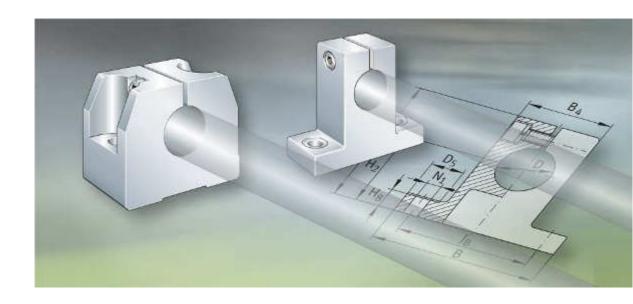
Dimension table · Dimensions in mm													
Designation	Mass	Dimension	S			Mounting di	mensions						
	m	d _{LW}	b	h ₄ ¹⁾	l _{max} ²⁾	b ₃	j _B	jL					
	≈g/m	h6			±2								
TSNW12-G4	1 600	12	40	22±0,1	4 000	5	29	75					
TSNW16-G4	2 500	16	45	26±0,1	4 000	6,8	33	100					
TSNW20-G4	3 800	20	52	32±0,1	4 000	7,8	37	100					
TSNW25-G4	5 300	25	57	36±0,1	4 000	9,8	42	120					
TSNW30-G5	7 500	30	69	42±0,15	4 000	11	51	150					
TSNW40-G5	12 400	40	73	50±0,15	4 000	14,5	55	200					

¹⁾ In relation to the nominal shaft diameter, measured whilst clamped.

²⁾ Maximum length of single-piece shaft and support rail units.

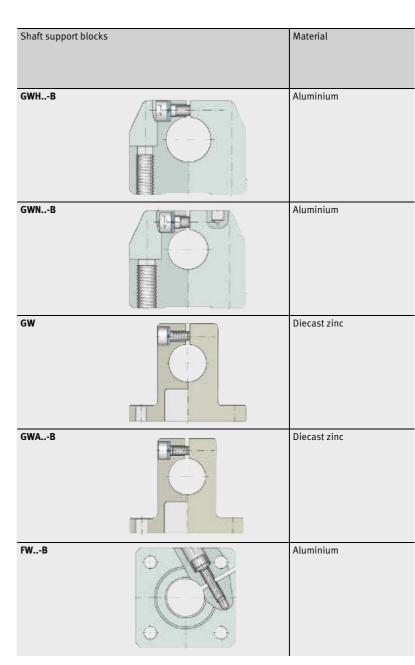
 $^{^{\}rm 3)}$ Dimensions a_L/a_R are dependent on the length of the shaft and support rail unit. Calculation, see page 135.

⁴⁾ For fixing screws DIN 7964. If there is a possibility of settling, the screws should be secured against rotation.


 $^{^{5)}}$ Maximum variation of dimension h_4 , measured on the same shaft and support rail unit over a length of 1000 mm.

 $^{^{6)}\,\, \}textcircled{\scriptsize 1}\,$ The shaft protrudes on both sides beyond the support rail by approx. 2 mm.

$a_L/a_R^{3)}$		H ₈	h ₇	K ₃ ⁴⁾	K ₆	K ₇	Variation of h	4 ⁵⁾
							Accuracy class	Variation
min.	max.					ISO 4762		mm
20	69	5	0,2	4,5	4,5	M4×18	G4	0,03
20	93	5	0,2	5,5	5,5	M5×22	G4	0,03
20	92	6	0,2	6,6	6,6	M6×25	G4	0,03
20	110	6	0,3	6,6	9	M8×30	G4	0,03
20	139	7	0,3	9	11	M10×30	G5	0,04
20	189	8	0,3	9	11	M10×35	G5	0,04

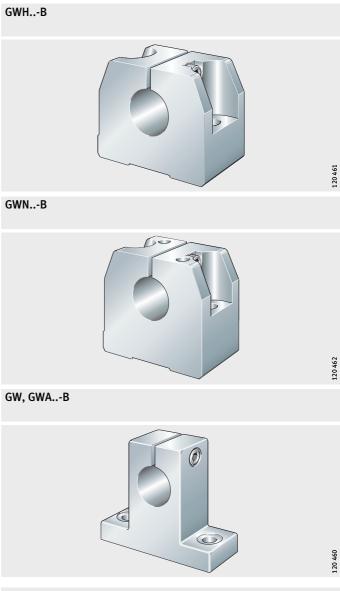


Shaft support blocks

		Page
Matrix	Matrix for preselection of shaft support blocks	146
Product overview	Shaft support blocks	148
Features		149
Dimension tables	Shaft support blocks	150
	Shaft support block with flange	154

Matrix for preselection of shaft support blocks

Definition:


Available for stated shaft diameter d_{LW}

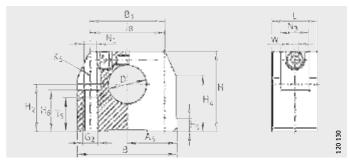
For shaft diameter d _{LW} in mm											Features	Location		Description
												Thread	Through hole	
06	08	10	12	14	16	20	25	30	40	50				Page
•	•	•	•	•	•	•	•	•	•	•	Low position of shaft	yes	yes	149
-	-	-	•	-	•	•	•	•	•	•	Suitable for dowelling	yes	yes	149
-	-	•	•	•	•	•	•	•	•	•	Space-saving design	-	yes	149
-	-	•	•	-	•	•	•	•	•	•	For larger fixing screws Space-saving design	-	yes	149
-	-	-	•	-	•	•	•	•	•	•	Suitable for dowelling	yes	yes	149

Product overview Shaft support blocks

Shaft support blocks

Shaft support block with flange

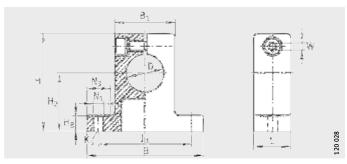
Features


Shaft support blocks are used to support shafts and locate the ends of the shaft.

They are suitable for all the solid and hollow shafts in this catalogue. They are made from either an aluminium alloy or pressure diecast zinc.

Series GWA...B is identical in design to series GW but is suitable for larger fixing screws.

Depending on the series, the shaft support blocks have through holes or threaded holes.

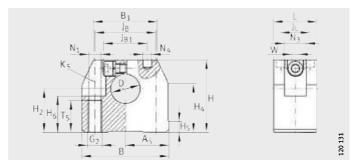


GWH..-B

Dimension t	Dimension table ⋅ Dimensions in mm																	
Desig-	Mass	Dime	ensions	5		Mounti	Mounting dimensions											
nation	m	D	В	L	Н	J _B	A ₅	B ₁	H ₂	H ₄	H ₅	T ₅	H ₆	G_2	N_1	N_3	K ₅ ¹⁾	W ²⁾
	≈g	Н8				±0,15			±0,01									
GWH06-B	30	6	32	16	27	22	16	25	15	20,6	5	11	13	M5	4,3	10	M4	2,5
GWH08-B	30	8	32	16	27	22	16	25	16	20,6	5	11	13	M5	4,3	10	M4	2,5
GWH10-B	50	10	40	18	33	27	20	32	18	25,1	5	13	16	M6	5,3	11	M5	3
GWH12-B	50	12	40	18	33	27	20	32	19	25,1	5	13	16	M6	5,3	11	M5	3
GWH14-B	70	14	43	20	36,5	32	21,5	34	20	28,1	6,9	13	18	M6	5,3	11	M5	3
GWH16-B	70	16	43	20	36,5	32	21,5	34	22	28,1	6,9	13	22	M6	5,3	11	M5	3
GWH20-B	120	20	53	24	42,5	39	26,5	40	25	29,8	7,4	18	22	M8	6,6	15	M6	4
GWH25-B	170	25	60	28	52,5	44	30	44	31	36,6	9,9	22	26	M10	8,4	18	M8	5
GWH30-B	220	30	67	30	60	49	33,5	49,5	34	42,7	8	22	29	M10	8,4	18	M8	5
GWH40-B	480	40	87	40	73,5	66	43,5	63	42	49,7	12,8	26	38	M12	10,5	20	M10	6
GWH50-B	820	50	103	50	92	80	51,5	74	50	62,3	10,9	34	46	M16	13,5	24	M12	8

¹⁾ For fixing screws ISO 4762-8.8. If there is a possibility of settling, the screws should be secured against rotation.

²⁾ Width across flats.


GW, GWA..-B

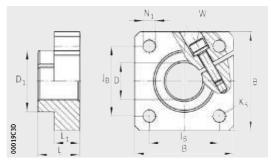
Dimension tal	ole · Dimen	sions in	mm										
Designation	Mass	Dimen	sions			Mounting d	imensio	ns					
	m	D	В	L	Н	J _B	B ₁	H ₂	H ₈	N ₁ ¹⁾	N ₃	K ₅	Width across flats W
GW10	≈g							±0,15		3,4	8	M3	
GWA10-B	30	10	37	11	30	28±0,15	18	17	5	4,5	9	M4	2,5
GWA10-B										4,5	10	M4	
GWA12-B	40	12	42	12	35	32±0,15	20	20	5,5	5,5	11	M5	3
GW14										4,5	10	M4	
GWA14-B	60	14	46	14	38	36±0,15	23	22	6	5,5	11	M5	3
GW16										4,5	10	M4	
GWA16-B	80	16	50	16	42	40±0,15	26	25	6,5	5,5	11	M5	3
GW20										4,5	10	M4	_
GWA20-B	150	20	60	20	50	45 ±0,15	32	30	7,5	5,5	11	M5	3
GW25	242		_,	0.5			20		0.5	5,5	11	M5	
GWA25-B	260	25	74	25	58	60±0,15	38	35	8,5	6,6	13	M6	4
GW30	200	20	84	20	68	(0			0.5	6,6	13	M6	F
GWA30-B	380	30	84	28	68	68±0,2	45	40	9,5	9	18	M8	5
GW40	670	40	108	32	86	86±0.2	56	50	12	9,1	18	M8	6
GWA40-B	6/0	40	108	32	80	80±0,2	30	30	12	11,1	22	M10	0
GW50	1 380	50	130	40	100	108±0.2	80	60	14	9	18	M8	6
GWA50-B	1 380	50	130	40	100	100 ±0,2	00	60	14	11	22	M10	0

¹⁾ For fixing screws ISO 4762-8.8.

If there is a possibility of settling, the screws should be secured against rotation.

GWN..-B

Dimension table	e · Dimension	s in mm											
Designation Mass Dimensions Mounting dimensions													
	m	D	В	L	Н	J _B	J _{B1}	B ₁	A ₅	J _L			
	≈g	Н8							±0,01				
GWN12-B	60	12	43	20	35	30±0,15	20	34	21,5	13			
GWN16-B	100	16	53	24	42	38±0,15	26	40	26,5	16			
GWN20-B	170	20	60	30	50	42±0,15	30	44	30	20			
GWN25-B	330	25	78	38	60	56±0,15	40	60	39	25			
GWN30-B	450	30	87	40	70	64±0,15	45	63	43,5	26			
GWN40-B	850	40	108	48	90	82±0,15	65	76	54	32			
GWN50-B	1 400	50	132	58	105	100±0,2	70	90	66	36			


¹⁾ Centring for dowel hole.

For fixing screws ISO 4762-8.8. If there is a possibility of settling, the screws should be secured against rotation.

H ₂ ±0,01	H ₄	H ₅	T ₅	H ₆	G ₂	N ₁	N ₄ ¹⁾	N ₃		Width across flats W
20	26,6	5,4	13	16,5	M6	5,3	4	10	M5	3
25	26,6	5,4	18	21	M8	6,6	5	11	M6	4
30	34,1	7,4	22	25	M10	8,4	6	15	M8	5
35	41,5	8,3	26	30	M12	10,5	8	18	M10	6
40	46,2	9,3	26	34	M12	10,5	8	18	M10	6
50	57,6	11,7	34	44	M16	13,5	10	20	M12	8
60	62	10,6	43	49	M20	17,5	12	26	M16	10

Shaft support block with flange

FW-B

Dimension tab	le ∙ Dimensi	ons in mm										
Designation	Mass	Dimensio	imensions Mounting dimensions									
	m	D	В	L	L ₁	D ₁	N ₁	K ₅ ¹⁾	J _B	Width across flats W		
	≈g	H8					H13					
FW12-B	50	12	40	20	12	23,5	5,5	M5	30	3		
FW16-B	80	16	50	20	12	27,5	5,5	M5	35	3		
FW20-B	100	20	50	23	14	33,5	6,6	M6	38	4		
FW25-B	160	25	60	25	16	42	6,6	M6	42	5		
FW30-B	260	30	70	30	19	49,5	9	M8	54	6		
FW40-B	700	40	100	40	26	65	11	M10	68	8		
FW50-B	900	50	100	50	36	75	11	M10	75	8		

¹⁾ For fixing screws ISO 4762-8.8.

If there is a possibility of settling, the screws should be secured against rotation.

Addresses

Schaeffler Technologies GmbH & Co. KG Germany

Linear Technology Division Berliner Straße 134 66424 Homburg (Saar) Tel. +(49) 6841 701-0 Fax +(49) 6841 701-2625 info.linear@schaeffler.com

Argentina Schaeffler Argentina S.r.l.
Av. Alvarez Jonte 1938
C1416EXR Buenos Aires
Tel. +(54) 11 40 16 15 00
Fax +(54) 11 45 82 33 20 info-ar@schaeffler.com

Australia Schaeffler Australia Pty Ltd. Level 1, Bldg. 8, Forest Central Business Park 49 Frenchs Forest Road Frenchs Forest, NSW 2086 Tel. +(61) 2 8977 1000 Fax +(61) 2 9452 4242 sales.au@schaeffler.com

Austria Schaeffler Austria GmbH

Ferdinand-Pölzl-Straße 2 2560 Berndorf-St. Veit Tel. +(43) 2672 202-0 Fax +(43) 2672 202-1003 info.at@schaeffler.com

Belarus Schaeffler Technologies GmbH Co. KG

Repräsentanz Weißrußland Odoewskogo 117, office 317 220015 Minsk Tel. +(375) 17 269 94 81 Fax +(375) 17 269 94 82 info.by@schaeffler.com

Belgium Schaeffler Belgium S.P.R.L./B.V.B.A.

Avenue du Commerce, 38 1420 Braine L'Alleud Tel. +(32) 2 3 89 13 89 Fax +(32) 2 3 89 13 99 info.be@schaeffler.com

Bosnia-Herzegovina Schaeffler Hrvatska d.o.o. Ogrizovićeva 28b 10000 Zagreb

Croatia

Tel. +(385) 1 37 01 943 Fax +(385) 1 37 64 473 info.hr@schaeffler.com

Brazil Schaeffler Brasil Ltda. Av. Independência, 3500-A

Bairro Éden

18087-101 Sorocaba, SP Tel. +(55) 0800 11 10 29 Fax +(55) 15 33 35 19 60 sac.br@schaeffler.com

Bulgaria Schaeffler Bulgaria OOD Dondukov-Blvd. No 62 Eing. A, 6. Etage, App. 10 1504 Sofia Tel. +(359) 2 946 3900 +(359) 2 943 4008 Fax +(359) 2 943 4134

info.bg@schaeffler.com

Canada Schaeffler Canada Inc.

2871 Plymouth Drive

2871 Prymount of the Oakville, ON L6H 5S5 Tel. +(1) 905 8 29 27 50 +(1) 800 263 4397 (Toll Free) Fax +(1) 905 8 29 25 63 info.ca@schaeffler.com

China Schaeffler Trading (Shanghai) Co., Ltd. No. 1 Antuo Road (west side of Anhong Road), Anting, Jiading District

201804 Shanghai Tel. +(86) 21 3957 6500 Fax +(86) 21 3959 3205

info.cn-shanghai@schaeffler.com

Croatia Schaeffler Hrvatska d.o.o. Ogrizovićeva 28b 10000 Zagreb Tel. +(385) 1 37 01 943 Fax +(385) 1 37 64 473 info.hr@schaeffler.com

Czech Schaeffler CZ s.r.o. Republic Průběžná 74a 100 00 Praha 10

Tel. +(420) 267 298 111 Fax +(420) 267 298 110 info.cz@schaeffler.com

Denmark

Schaeffler Danmark ApS Jens Baggesens Vej 90P 8200 Aarhus N Tel. +(45) 70 15 44 44 Fax +(45) 70 15 22 02 info.dk@schaeffler.com

Estonia

Schaeffler Technologies Repräsentanz Baltikum Duntes iela 23a 1005 Riga Latvia

Tel. +(371) 7 06 37 95 Fax +(371) 7 06 37 96 info.lv@schaeffler.com

Finland Schaeffler Finland Oy Lautamiehentie 3 02770 Espoo

Tel. +(358) 207 36 6204 Fax +(358) 207 36 6205 info.fi@schaeffler.com

France Schaeffler France SAS 93 route de Bitche, BP 30186 67506 Haguenau Cedex Tel. +(33) 3 88 63 40 40 Fax +(33) 3 88 63 40 41 info.fr@schaeffler.com

Great Britain Schaeffler (UK) Ltd. Forge Lane, Minworth Sutton Coldfield B76 1AP Tel. +(44) 121 3 13 58 70 Fax +(44) 121 3 13 00 80 info.uk@schaeffler.com

Hungary

Schaeffler Magyarország Ipari Kft. Rétköz utca 5. 1118 Budapest Tel. +(36) 1 4 81 30 50

Fax +(36) 1 4 81 30 53 budapest@schaeffler.com

Italy

Schaeffler Italia S.r.l. Via Dr. Georg Schaeffler, 7 28015 Momo Tel. +(39) 0321 929 211 Fax +(39) 0321 929 300 info.it@schaeffler.com

Japan

Schaeffler Japan Co., Ltd. New Stage Yokohama 1-1-32 Shinurashima-cho 222-0031 Yokohama Tel. +(81) 45 274 8211 Fax +(81) 45 274 8221 info-japan@schaeffler.com

Korea

Schaeffler Korea Corporation 14F, Kyobo life insurance Bldg. Seoul, 110-714 Tel. +(82) 2 311 3440 Fax +(82) 505-073-2042 sangnam.lee@schaeffler.com

Latvia

Schaeffler Technologies Repräsentanz Baltikum Duntes iela 23a 1005 Riga Tel. +(371) 7 06 37 95 Fax +(371) 7 06 37 96 info.lv@schaeffler.com

Lithuania Schaeffler Technologies Repräsentanz Baltikum Duntes iela 23a 1005 Riga Latvia Tel. +(371) 7 06 37 95 Fax +(371) 7 06 37 96 info.lv@schaeffler.com

Addresses

Mexico INA Mexico, S.A. de C.V. Rodamientos FAG, S.A. de C.V.

Henry Ford #141 Col. Bondojito

Deleg. Gustavo A. Madero 07850 Mexico D.F. Tel. +(52) 55 5062 6085 Fax +(52) 55 5739 5850 distr.indl.mx@schaeffler.com

Netherlands Schaeffler Nederland B.V.

Gildeweg 31 3771 NB Barneveld Tel. +(31) 342 40 30 00 Fax +(31) 342 40 32 80 info.nl@schaeffler.com

New Zealand Schaeffler New Zealand

(Unit R, Cain Commercial Centre)

20 Cain Road 1135 Penrose

Tel. +(64) 9 583 1280 +(64) 021 324 247 (Call out fee applies) Fax +(64) 9 583 1288 sales.nz@schaeffler.com

Norway Schaeffler Norge AS

Grenseveien 107B 0663 Oslo Tel. +(47) 23 24 93 30 Fax +(47) 23 24 93 31 info.no@schaeffler.com

Poland Schaeffler Polska Sp. z.o.o.

Budynek E

ul. Szyszkowa 35/37 02-285 Warszawa Tel. +(48) 22 8 78 41 20 Fax +(48) 22 8 78 41 22 info.pl@schaeffler.com

Portugal INA Rolamentos Lda.

Arrábida Lake Towers

Rua Daciano Baptista Marques Torre C,

181, 2º piso

4400-617 Vila Nova de Gaia Tel. +(351) 22 5 32 08 00 Fax +(351) 22 5 32 08 60 info.pt@schaeffler.com

Romania S.C. Schaeffler Romania S.R.L.

Aleea Schaeffler Nr. 3 507055 Cristian/Brasov Tel. +(40) 268 505000 Fax +(40) 268 505848 info.ro@schaeffler.com

Russia Schaeffler Rußland GmbH
Piskarevsky prospect, 2, build.3, letter A
BC "Benua", office 207
195027 St. Petersburg
Tel. +(7) 812 633 3644
Fax +(7) 812 633 3645
info cph @cchaeffler Ru info.spb@schaeffler.ru

> Schaeffler Rußland Leningradsky Prospekt 47, Bau 3

Business-Center Avion 125167 Moscow Tel. +(7) 495 73776-60 Fax +(7) 495 73776-61 info.ru@schaeffler.com

Serbia Schaeffler Technologies

Repräsentanz Serbien Branka Krsmanovica 12 11118 Beograd Tel. +(381) 11 308 87 82 Fax +(381) 11 308 87 75

fagbgdyu@sezampro.yu

Singapore Schaeffler (Singapore) Pte. Ltd.

151 Lorong Chuan, #06-01 New Tech Park, Lobby A 556741 Singapore Tel. +(65) 6540 8600 Fax +(65) 6540 8668 info.sg@schaeffler.com

Slovak Schaeffler Slovensko, spol. s.r.o.

Ulica Dr. G. Schaefflera 1 02401 Kysucké Nové Mesto Republic

Tel. +(421) 41 4 20 59 11 Fax +(421) 41 4 20 59 18 info.sk@schaeffler.com

Slovenia Schaeffler Slovenija d.o.o.

Glavni trg 17/b

2000 Maribor Tel. +(386) 2 22 82 070 Fax +(386) 2 22 82 075 info.si@schaeffler.com

South Africa Schaeffler South Africa (Pty.) Ltd.
1 End Street Ext. Corner Heidelberg Road

2000 Johannesburg Tel. +(27) 11 225 3000 Fax +(27) 11 334 1755 info.co.za@schaeffler.com

Spain Schaeffler Iberia, s.l.u. C/ Foment, 2 Polígono Ind. Pont Reixat 08960 Sant Just Desvern Tel. +(34) 93 4 80 34 10 Fax +(34) 93 3 72 92 50 info.es@schaeffler.com

Sweden

Schaeffler Sverige AB Charles gata 10 195 61 Arlandastad Tel. +(46) 8 59 51 09 00 Fax +(46) 8 59 51 09 60 info.se@schaeffler.com

Switzerland HYDREL GmbH

Badstraße 14 8590 Romanshorn Tel. +(41) 71 4 66 66 66 Fax +(41) 71 4 66 63 33 info.ch@schaeffler.com

Turkey

Schaeffler Rulmanlari Ticaret Limited Sirketi

Aydin Sokak Dagli Apt. 4/4

1. Levent 34340 Istanbul

Tel. +(90) 212 2 79 27 41 +(90) 212 280 77 98 Fax +(90) 212 281 66 45 +(90) 212 280 94 45

info.tr@schaeffler.com

Ukraine Schaeffler Technologies Representative Office Ukraine

Jilyanskayastr. 75, 5-er Stock Business Center «Eurasia»

01032 Kiew

Tel. +(380) 44 520 13 80

Fax +(380) 44 520 13 81

info.ua@schaeffler.com

USA Schaeffler Group USA Inc. 308 Springhill Farm Road Corporate Offices Fort Mill, SC 29715 Tel. +(1) 803 548 8500 Fax +(1) 803 548 8599 info.us@schaeffler.com

Notes

160 **WF 1**

Schaeffer Technologies GmbH & Co. KG

Linear Technology Division Berliner Straße 134 66424 Homburg/Saar (Germany) Internet www.ina.com

E-mail info.linear@schaeffler.com

In Germany:

Phone 0180 5003872 Fax 0180 5003873 From other countries:

Phone +49 6841 701-0 Fax +49 6841 701-2625